1 |
Renewables global status report[R/OL]. https://www.iea.org/reports/renewables-2021.
|
2 |
IEA. Renewable and non-renewable heat consumption and heat-related CO2 emissions in buildings, 2010—2020, IEA, ParisR/OL].https://www.iea.org/data-and-statistics/charts/renewable-and-non-renewable-heat-consumption-and-heat-related-CO2-emissions-in-buildings-2010-2020.
|
3 |
Global Energy Review 2021. https://www.iea.org/reports/global-energy-review-2021.
|
4 |
VAN SOEST H L, DEN ELZEN M G J, VAN VUUREN D P. Net-zero emission targets for major emitting countries consistent with the Paris Agreement[J]. Nature Communications, 2021, 12: 2140.
|
5 |
ALLEN-DUMAS M R, ROSE A N, NEW J R, et al. Impacts of the morphology of new neighborhoods on microclimate and building energy[J]. Renewable and Sustainable Energy Reviews, 2020, 133: 110030.
|
6 |
杨慧, 童莉葛, 尹少武, 等. 水合盐热化学储热材料的研究概述[J]. 材料导报, 2021, 35(17): 17150-17162.
|
|
YANG H, TONG L G, YIN S W, et al. A review on the salt hydrate thermochemical heat storage materials[J]. Materials Reports, 2021, 35(17): 17150-17162.
|
7 |
LIZANA J, CHACARTEGUI R, BARRIOS-PADURA A, et al. Advances in thermal energy storage materials and their applications towards zero energy buildings: A critical review[J]. Applied Energy, 2017, 203: 219-239.
|
8 |
FOPAH LELE A, KUZNIK F, RAMMELBERG H U, et al. Thermal decomposition kinetic of salt hydrates for heat storage systems[J]. Applied Energy, 2015, 154: 447-458.
|
9 |
KUZNIK F, JOHANNES K, OBRECHT C, et al. A review on recent developments in physisorption thermal energy storage for building applications[J]. Renewable and Sustainable Energy Reviews, 2018, 94: 576-586.
|
10 |
KRESE G, KOŽELJ R, BUTALA V, et al. Thermochemical seasonal solar energy storage for heating and cooling of buildings[J]. Energy and Buildings, 2018, 164: 239-253.
|
11 |
PENG X Y, YAO M, ROOT T W, et al. Design and analysis of concentrating solar power plants with fixed-bed reactors for thermochemical energy storage[J]. Applied Energy, 2020, 262: 114543.
|
12 |
CLARK R J, MEHRABADI A, FARID M. State of the art on salt hydrate thermochemical energy storage systems for use in building applications[J]. Journal of Energy Storage, 2020, 27: 101145.
|
13 |
DING B, XU C, LIAO Z R, et al. Study on long-term thermochemical thermal storage performance based on SrBr2-expanded vermiculite composite materials[J]. Journal of Energy Storage, 2021, 42: 103081.
|
14 |
MUKHERJEE A, MAJUMDAR R, SAHA S K, et al. Performance evaluation of an open thermochemical energy storage system integrated with flat plate solar collector[J]. Applied Thermal Engineering, 2020, 173: 115218.
|
15 |
HAN X J, LIU S L, ZENG C, et al. Investigating the performance enhancement of copper fins on trapezoidal thermochemical reactor[J]. Renewable Energy, 2020, 150: 1037-1046.
|
16 |
FARCOT L, LE PIERRÈS N, MICHEL B, et al. Numerical investigations of a continuous thermochemical heat storage reactor[J]. Journal of Energy Storage, 2018, 20: 109-119.
|
17 |
TATSIDJODOUNG P, LE PIERRÈS N, HEINTZ J, et al. Experimental and numerical investigations of a zeolite 13X/water reactor for solar heat storage in buildings[J]. Energy Conversion and Management, 2016, 108: 488-500.
|
18 |
LI W, GUO H, ZENG M, et al. Performance of SrBr2 ·6H2O based seasonal thermochemical heat storage in a novel multilayered sieve reactor[J]. Energy Conversion and Management, 2019, 198: 111843.
|
19 |
FARCOT L, LE PIERRÈS N, FOURMIGUÉ J F. Experimental investigation of a moving-bed heat storage thermochemical reactor with SrBr2/H2O couple[J]. Journal of Energy Storage, 2019, 26: 101009.
|
20 |
ZENG C, LIU S L, YANG L, et al. Investigation of a three-phase thermochemical reactor through an experimentally validated numerical modelling[J]. Applied Thermal Engineering, 2019, 162: 114223.
|
21 |
WANG C C, YANG H, NIE B J, et al. Discharging behavior of a shell-and-tube based thermochemical reactor for thermal energy storage: Modeling and experimental validation[J]. International Journal of Heat and Mass Transfer, 2022, 183: 122160.
|
22 |
MICHEL B, NEVEU P, MAZET N. Comparison of closed and open thermochemical processes, for long-term thermal energy storage applications[J]. Energy, 2014, 72: 702-716.
|
23 |
刘业凤, 范宏武, 王如竹. 新型复合吸附剂SiO2 · xH2O· yCaCl2与常用吸附剂空气取水性能的对比实验研究[J]. 太阳能学报, 2003, 24(2): 141-144.
|
|
LIU Y F, FAN H W, WANG R Z. Performances comparison of a new composite adsorbent SiO2 · xH2O· yCaCl2 and other common adsorbents to extract water from air[J]. Acta Energiae Solaris Sinica, 2003, 24(2): 141-144.
|
24 |
杨娜, 王成成, 杨慧, 等. 基于热化学反应的硅胶非等温动力学计算及储热性能分析[J]. 储能科学与技术, 2022, 11(5): 1331-1338.
|
|
YANG N, WANG C C, YANG H, et al. Non-isothermal kinetics calculation and heat storage performance analysis of silica gel based on thermochemical reaction[J]. Energy Storage Science and Technology, 2022, 11(5): 1331-1338.
|
25 |
MANILA M R, MITRA S, DUTTA P. Studies on dynamics of two-stage air cooled water/silica gel adsorption system[J]. Applied Thermal Engineering, 2020, 178: 115552.
|
26 |
YEBOAH S K, DARKWA J. Experimental data on water vapour adsorption on silica gel in fully packed and Z-annulus packed beds[J]. Data in Brief, 2021, 34: 106736.
|
27 |
XU C, XIE Y Y, LIAO Z R, et al. Numerical study on the desorption process of a thermochemical reactor filled with MgCl2 ·6H2O for seasonal heat storage[J]. Applied Thermal Engineering, 2019, 146: 785-794.
|
28 |
PESARAN A A, MILLS A F. Moisture transport in silica gel packed beds (II): Experimental study[J]. International Journal of Heat and Mass Transfer, 1987, 30(6): 1051-1060.
|
29 |
HUTSON N D, YANG R T. Theoretical basis for the Dubinin-Radushkevitch (D-R) adsorption isotherm equation[J]. Adsorption, 1997, 3(3): 189-195.
|
30 |
MOHAMMED R H, MESALHY O, ELSAYED M L, et al. Physical properties and adsorption kinetics of silica-gel/water for adsorption chillers[J]. Applied Thermal Engineering, 2018, 137: 368-376.
|
31 |
SIRCAR S, HUFTON J R. Why does the linear driving force model for adsorption kinetics work?[J]. Adsorption, 2000, 6(2): 137-147.
|
32 |
RUIVO C R, FIGUEIREDO A R, COSTA J J. Correlations for the mass transfer coefficient in desiccant matrices when using linear driving force and pseudo-gas-side-controlled models[J]. Energy, 2014, 75: 613-623.
|
33 |
EDELMANN D, MÓRI T F, SZÉKELY G J. On relationships between the Pearson and the distance correlation coefficients[J]. Statistics & Probability Letters, 2021, 169: 108960.
|
34 |
DELURGIO S. Forecasting principles and applications[M]. Richard D Irwin, 1998.
|