1 |
YANG Q, ZHOU H W, BARTOCCI P, et al. Prospective contributions of biomass pyrolysis to China's 2050 carbon reduction and renewable energy goals[J]. Nature Communications, 2021, 12: 1698.
|
2 |
RAZMJOO A, GAKENIA K L, VAZIRI R M A, et al. A Technical analysis investigating energy sustainability utilizing reliable renewable energy sources to reduce CO2 emissions in a high potential area[J]. Renewable Energy, 2021, 164: 46-57.
|
3 |
RAHMAN M, ONI A, GEMECHU E, et al. Assessment of energy storage technologies: A review[J]. Energy Conversion and Management, 2020, 223: doi: 10.1016/j.enconman.2020.113295.
|
4 |
LIU J, HU C, KIMBER A, et al. Uses, cost-benefit analysis, and markets of energy storage systems for electric grid applications[J]. Journal of Energy Storage, 2020, 32: doi: 10.1016/j.est.2020.101731.
|
5 |
ARBABZADEH M, SIOSHANSI R, JOHNSON J X, et al. The role of energy storage in deep decarbonization of electricity production[J]. Nature Communications, 2019, 10: 3413.
|
6 |
GAUTAM A, SAINI R. A review on sensible heat based packed bed solar thermal energy storage system for low temperature applications[J]. Solar Energy, 2020, 207: 937-956.
|
7 |
WOODS J, MAHVI A, GOYAL A, et al. Rate capability and Ragone plots for phase change thermal energy storage[J]. Nature Energy, 2021, 6(3): 295-302.
|
8 |
DESAI F, SUNKU P J, MUTHUKUMAR P, et al. Thermochemical energy storage system for cooling and process heating applications: A review[J]. Energy Conversion and Management, 2021, 229: doi: 10.1016/j.enconman.2020.113617.
|
9 |
KOÇAK B, FERNANDEZ A I, PAKSOY H. Review on sensible thermal energy storage for industrial solar applications and sustainability aspects[J]. Solar Energy, 2020, 209: 135-169.
|
10 |
LIN J, ZHAO Q, HUANG H, et al. Applications of low-temperature thermochemical energy storage systems for salt hydrates based on material classification: A review[J]. Solar Energy, 2021, 214: 149-178.
|
11 |
N'TSOUKPOE K, SCHMIDT T, RAMMELBERG H, et al. A systematic multi-step screening of numerous salt hydrates for low temperature thermochemical energy storage[J]. Applied Energy, 2014, 124: 1-16.
|
12 |
HONGOIS S, KUZNIK F, STEVENS P, et al. Development and characterisation of a new MgSO4-zeolite composite for long-term thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2011, 95(7): 1831-1837.
|
13 |
VAN ESSEN V M, ZONDAG H A, GORES J C, et al. Characterization of MgSO4 hydrate for thermochemical seasonal heat storage[J]. Journal of Solar Energy Engineering, 2009, 131(4): doi:10.1115/1.4000275.
|
14 |
POSERN K, LINNOW K, NIERMANN M, et al. Thermochemical investigation of the water uptake behavior of MgSO4 hydrates in host materials with different pore size[J]. Thermochimica Acta, 2015, 611: 1-9.
|
15 |
LINNOW K, NIERMANN M, BONATZ D, et al. Experimental studies of the mechanism and kinetics of hydration reactions[J]. Energy Procedia, 2014, 48: 394-404.
|
16 |
STEIGER M, LINNOW K, JULING H, et al. Hydration of MgSO4 ·H2O and generation of stress in porous materials[J]. Crystal Growth & Design, 2008, 8(1): 336-343.
|
17 |
MAHON D, CLAUDIO G, EAMES P C. An experimental investigation to assess the potential of using MgSO4 impregnation and Mg2+ ion exchange to enhance the performance of 13X molecular sieves for interseasonal domestic thermochemical energy storage[J]. Energy Conversion and Management, 2017, 150: 870-877.
|
18 |
XU S, WANG R, WANG L, et al. Performance characterizations and thermodynamic analysis of magnesium sulfate-impregnated zeolite 13X and activated alumina composite sorbents for thermal energy storage[J]. Energy, 2019, 167: 889-901.
|
19 |
WHITING G, GRONDIN D, BENNICI S, et al. Heats of water sorption studies on zeolite-MgSO4 composites as potential thermochemical heat storage materials[J]. Solar Energy Materials and Solar Cells, 2013, 112: 112-119.
|
20 |
QIN Y, LENG G, YU X, et al. Sodium sulfate-diatomite composite materials for high temperature thermal energy storage[J]. Powder Technology, 2015, 282: 37-42.
|
21 |
XU B, MA H, LU Z, et al. Paraffin/expanded vermiculite composite phase change material as aggregate for developing lightweight thermal energy storage cement-based composites[J]. Applied Energy, 2015, 160: 358-367.
|
22 |
SARı A. Thermal energy storage characteristics of bentonite-based composite PCMs with enhanced thermal conductivity as novel thermal storage building materials[J]. Energy Conversion and Management, 2016, 117: 132-141.
|
23 |
SHI J, LI M. Surface modification effects in phase change material-infiltrated attapulgite[J]. Materials Chemistry and Physics, 2020, 254: doi: 10.1016/j.matchemphys.2020.123521.
|
24 |
YU H, LI C, ZHANG K, et al. Preparation and thermophysical performance of diatomite-based composite PCM wallboard for thermal energy storage in buildings[J]. Journal of Building Engineering, 2020, 32: doi: 10.1016/j.jobe.2020.101753.
|
25 |
FENG J, LIU M, MO W, et al. Heating temperature effect on the hygroscopicity of expanded vermiculite[J]. Ceramics International, 2021, 47(18): 25373-25380.
|
26 |
WANG Q, XIE Y, DING B, et al. Structure and hydration state characterizations of MgSO4-zeolite 13X composite materials for long-term thermochemical heat storage[J]. Solar Energy Materials and Solar Cells, 2019, 200: doi: 10.1016/j.solmat.2019.110047.
|
27 |
BRANCATO V, GORDEEVA L, SAPIENZA A, et al. Experimental characterization of the LiCl/vermiculite composite for sorption heat storage applications[J]. International Journal of Refrigeration, 2019, 105: 92-100.
|
28 |
KORHAMMER K, DRUSKE M M, FOPAH-LELE A, et al. Sorption and thermal characterization of composite materials based on chlorides for thermal energy storage[J]. Applied Energy, 2016, 162: 1462-1472.
|
29 |
MEHRABADI A, FARID M. New salt hydrate composite for low-grade thermal energy storage[J]. Energy, 2018, 164: 194-203.
|
30 |
SHERE L, TRIVEDI S, ROBERTS S, et al. Synthesis and characterization of thermochemical storage material combining porous zeolite and inorganic salts[J]. Heat Transfer Engineering, 2019, 40(13/14): 1176-1181.
|
31 |
XU C, YU Z, XIE Y, et al. Study of the hydration behavior of zeolite-MgSO4 composites for long-term heat storage[J]. Applied Thermal Engineering, 2018, 129: 250-259.
|
32 |
CAMMARATA A, VERDA V, SCIACOVELLI A, et al. Hybrid strontium bromide-natural graphite composites for low to medium temperature thermochemical energy storage: Formulation, fabrication and performance investigation[J]. Energy Conversion and Management, 2018, 166: 233-240.
|
33 |
MIAO Q, ZHANG Y, JIA X, et al. MgSO4-expanded graphite composites for mass and heat transfer enhancement of thermochemical energy storage[J]. Solar Energy, 2021, 220: 432-439.
|
34 |
PALOMBA V, FRAZZICA A. Recent advancements in sorption technology for solar thermal energy storage applications[J]. Solar Energy, 2019, 192: 69-105.
|