1 |
刘子初, 全贞花, 赵耀华, 等. 新型微通道平板热管蓄冰性能[J]. 化工学报, 2020, 71(S1): 120-128.
|
|
LIU Z C, QUAN Z H, ZHAO Y H, et al. Characteristics of ice storage based on new type of flat micro heat pipe arrays[J]. CIESC Journal, 2020, 71(S1): 120-128.
|
2 |
林酿志, 李传常. 相变储能材料及其冷链运输应用[J]. 储能科学与技术, 2021, 10(3): 1040-1050.
|
|
LIN N Z, LI C C. Phase change materials for energy storage in cold-chain transportation[J]. Energy Storage Science and Technology, 2021, 10(3): 1040-1050.
|
3 |
WANG X L, ZHANG F Y, LIPIŃSKI W. Carbon dioxide hydrates for cold thermal energy storage: A review[J]. Solar Energy, 2020, 211: 11-30.
|
4 |
CHOI S, PARK J, PARK J H, et al. Study on CO2 hydrate formation characteristics with promoters for CO2 capture and cold thermal energy transportation[J]. Journal of Cleaner Production, 2021, 295: doi: 10.1016/j.jclepro.2021.126392.
|
5 |
AKIYA T, SHIMAZAKI T, OOWA M, et al. Formation conditions of clathrates between HFC alternative refrigerants and water[J]. International Journal of Thermophysics, 1999, 20(6): 1753-1763.
|
6 |
LI A R, JIANG L L, TANG S Y. An experimental study on carbon dioxide hydrate formation using a gas-inducing agitated reactor[J]. Energy, 2017, 134: 629-637.
|
7 |
钟栋梁, 杨晨, 刘道平, 等. 喷雾反应器中二氧化碳水合物的生长实验研究[J]. 过程工程学报, 2010, 10(2): 309-313.
|
|
ZHONG D L, YANG C, LIU D P, et al. Experimental study on formation of carbon dioxide hydrate in a water spraying reactor[J]. The Chinese Journal of Process Engineering, 2010, 10(2): 309-313.
|
8 |
王喜, 谢应明, 权涛. 甲烷水合物在冰浆中的鼓泡生成特性[J]. 油气储运, 2019, 38(2): 167-172.
|
|
WANG X, XIE Y M, QUAN T. Bubbling formation characteristics of methane hydrate in ice slurry[J]. Oil & Gas Storage and Transportation, 2019, 38(2): 167-172.
|
9 |
FIROOZABADI S R, BONYADI M, LASHANIZADEGAN A. Experimental investigation of Fe3O4 nanoparticles effect on the carbon dioxide hydrate formation in the presence of magnetic field[J]. Journal of Natural Gas Science and Engineering, 2018, 59: 374-386.
|
10 |
DA SILVA LIRIO C F, PESSOA F L P, ULLER A M C. Storage capacity of carbon dioxide hydrates in the presence of sodium dodecyl sulfate (SDS) and tetrahydrofuran (THF)[J]. Chemical Engineering Science, 2013, 96: 118-123.
|
11 |
ZHOU X B, LONG Z, TANG C P, et al. Kinetic measurements on CO2 hydrate formation in the presence of tetra-n-butyl ammonium bromide[J]. Energy & Fuels, 2018, 32(9): 9683-9691.
|
12 |
LEE J, KIM K S, SEO Y W. Thermodynamic, structural, and kinetic studies of cyclopentane + CO2 hydrates: Applications for desalination and CO2 capture[J]. Chemical Engineering Journal, 2019, 375(21): 248-256.
|
|
LEE J, KIM K S, SEO Y. Thermodynamic, structural, and kinetic studies of cyclopentane + CO2 hydrates: Applications for desalination and CO2 capture[J]. Chemical Engineering Journal, 2019, 375: doi: 10.1016/j.cej.2019.121974.
|
13 |
LI D L, PENG H, LIANG D Q. Thermal conductivity enhancement of clathrate hydrate with nanoparticles[J]. International Journal of Heat and Mass Transfer, 2017, 104: 566-573.
|
14 |
刘志明, 商丽艳, 潘振, 等. 多孔介质与SDS复配体系中天然气水合物生成过程分析[J]. 化工进展, 2018, 37(6): 2203-2213.
|
|
LIU Z M, SHANG L Y, PAN Z, et al. Analysis of natural gas hydrate formation process in porous media and SDS complex system[J]. Chemical Industry and Engineering Progress, 2018, 37(6): 2203-2213.
|
15 |
NAEIJI P, VARAMINIAN F. Kinetic study of carbon dioxide hydrate formation by thermal analysis in the presence of two surfactants: Sodium dodecyl sulfate (SDS) and lauryl alcohol ethoxylate (LAE)[J]. Journal of Molecular Liquids, 2018, 254: 120-129.
|
16 |
ANDRES-GARCIA E, DIKHTIARENKO A, FAUTH F, et al. Methane hydrates: Nucleation in microporous materials[J]. Chemical Engineering Journal, 2019, 360: 569-576.
|
17 |
CHEN B, XIN F, SONG X F, et al. Kinetics of carbon dioxide hydration enhanced with a phase-change slurry of n-tetradecane[J]. Energy & Fuels, 2017, 31(4): 4245-4254.
|
18 |
ZHOU L C, SUN Z G, LU L, et al. Effect of organic phase change material and surfactant on HCFC141b hydrate nucleation in quiescent conditions[J]. Chemical Engineering Science, 2020, 228: doi: 10.1016/j.ces.2020.115976.
|
19 |
李璞, 张龙明, 覃小焕, 等. 微乳液中R141b水合物快速生成实验研究[J]. 工程热物理学报, 2014, 35(12): 2358-2362.
|
|
LI P, ZHANG L M, QIN X H, et al. Experimental study on fast formation of R141b hydrate in microemulsion[J]. Journal of Engineering Thermophysics, 2014, 35(12): 2358-2362.
|
20 |
周麟晨, 孙志高, 陆玲, 等. 静态条件下表面活性剂促进HCFC-141b水合物生成[J]. 高校化学工程学报, 2020, 34(2): 402-410.
|
|
ZHOU L C, SUN Z G, LU L, et al. Enhancement of HCFC-141b hydrate formation with surfactants in a static system[J]. Journal of Chemical Engineering of Chinese Universities, 2020, 34(2): 402-410.
|
21 |
李荣, 孙志高, 宋佳. 静态条件下氨基酸对HCFC-141b水合物生成的促进[J]. 低温工程, 2021(4): 59-64.
|
|
LI R, SUN Z G, SONG J. Study on HCFC-141b hydrate formation promoted by amino acids in quiescent conditions[J]. Cryogenics, 2021(4): 59-64.
|
22 |
BAVOH C B, LAL B, OSEI H, et al. A review on the role of amino acids in gas hydrate inhibition, CO2 capture and sequestration, and natural gas storage[J]. Journal of Natural Gas Science and Engineering, 2019, 64: 52-71.
|
23 |
BHATTACHARJEE G, CHOUDHARY N, KUMAR A, et al. Effect of the amino acid l-histidine on methane hydrate growth kinetics[J]. Journal of Natural Gas Science and Engineering, 2016, 35: 1453-1462.
|
24 |
BAVOH C B, NASHED O, KHAN M S, et al. The impact of amino acids on methane hydrate phase boundary and formation kinetics[J]. The Journal of Chemical Thermodynamics, 2018, 117: 48-53.
|
25 |
陈玉龙. 氨基酸促进甲烷水合物形成的机理研究[D]. 广州: 华南理工大学, 2016.
|
|
CHEN Y L. Mechanism of amino acids in promoting methane hydrates formation[D]. Guangzhou: South China University of Technology, 2016.
|
26 |
JEENMUANG K, VIRIYAKUL C, INKONG K, et al. Enhanced hydrate formation by natural-like hydrophobic side chain amino acids at ambient temperature: A kinetics and morphology investigation[J]. Fuel, 2021, 299: doi: 10.1016/j.fuel.2021.120828.
|
27 |
PRASAD P S R, KIRAN B S. Are the amino acids thermodynamic inhibitors or kinetic promoters for carbon dioxide hydrates?[J]. Journal of Natural Gas Science and Engineering, 2018, 52: 461-466.
|
28 |
VELUSWAMY H P, LEE P Y, PREMASINGHE K, et al. Effect of biofriendly amino acids on the kinetics of methane hydrate formation and dissociation[J]. Industrial & Engineering Chemistry Research, 2017, 56(21): 6145-6154.
|
29 |
HU Y, WANG S, YANG X S, et al. Examination of amino acid inhibitor effect in methane hydrate dissociation via molecular dynamics simulation[J]. Journal of Molecular Liquids, 2020, 325: doi: 10.1016/j.molliq.2020.115205.
|
30 |
QURESHI M F, KHRAISHEH M, ALMOMANI F. Probing the effect of various water fractions on methane (CH4) hydrate phase equilibria and hydrate inhibition performance of amino acid L-proline[J]. Journal of Molecular Liquids, 2021, 333: doi: 10.1016/j.molliq.2021.115888.
|
31 |
KYTE J, DOOLITTLE R F. A simple method for displaying the hydropathic character of a protein[J]. Journal of Molecular Biology, 1982, 157(1): 105-132.
|
32 |
张龙明, 李璞, 李娜, 等. 混合量热法测定水合物浆体蓄冷密度[J]. 制冷学报, 2014, 35(6): 47-52.
|
|
ZHANG L M, LI P, LI N, et al. Determination of hydrate slurry's cool-storage density with mixing calorimetry method[J]. Journal of Refrigeration, 2014, 35(6): 47-52.
|