储能科学与技术 ›› 2020, Vol. 9 ›› Issue (6): 1847-1857.doi: 10.19799/j.cnki.2095-4239.2020.0129
王俊1, 曹建军1, 张利勇1, 刘亚奇2,3, 凌浩恕2,3(), 徐玉杰2,3, 王亮2,3, 周学志4, 谢宁宁4, 陈海生2,4
收稿日期:
2020-04-01
修回日期:
2020-06-03
出版日期:
2020-11-05
发布日期:
2020-10-28
通讯作者:
凌浩恕
E-mail:linghaoshu@iet.cn
作者简介:
王俊(1980—),男,博士,高级工程师,从事清洁发电、分布式能源、综合能源服务等技术研究和项目开发;
基金资助:
Jun WANG1, Jianjun CAO1, Liyong ZHANG1, Yaqi LIU2,3, Haoshu LING2,3(), Yujie XU2,3, Liang WANG2,3, Xuezhi ZHOU4, Ningning XIE4, Haisheng CHEN2,4
Received:
2020-04-01
Revised:
2020-06-03
Online:
2020-11-05
Published:
2020-10-28
Contact:
Haoshu LING
E-mail:linghaoshu@iet.cn
摘要:
分布式能源系统具有能源利用率高等优点,在国内外得到了快速的发展,但是仍存在设计容量偏大、运行效率降低、耦合可再生能源系统安全性差等问题。为了解决上述问题,蓄冷蓄热技术被应用于分布式能源系统,并得到广泛的应用,但是相关研究工作多为个例,缺少系统性整理和论述。本文从蓄冷蓄热材料发展现状出发,论述不同蓄冷蓄热材料的特点;然后总结分布式能源系统与蓄冷蓄热技术耦合应用现状,分析不同蓄冷蓄热技术的应用效果,确定基于分布式能源系统的蓄冷蓄热技术的发展趋势。结果表明,水、熔盐、耐火砖、冰、石蜡、水合盐是较为适宜的商业应用蓄冷蓄热材料。与分布式能源系统耦合的蓄冷蓄热技术主要为水蓄冷、冰蓄冷、水蓄热、熔盐蓄热、相变蓄热、热化学蓄热技术,其中水蓄冷、冰蓄冷、水蓄热和熔盐蓄热技术耦合应用较为成熟,相变蓄热耦合应用处于示范应用阶段,热化学蓄热耦合应用处于实验室研究阶段。蓄冷蓄热技术与可再生能源分布式系统的耦合应用是未来重要的发展方向。本文可为我国分布式能源系统高效应用提供参考和依据。
中图分类号:
王俊, 曹建军, 张利勇, 刘亚奇, 凌浩恕, 徐玉杰, 王亮, 周学志, 谢宁宁, 陈海生. 基于分布式能源系统的蓄冷蓄热技术应用现状[J]. 储能科学与技术, 2020, 9(6): 1847-1857.
Jun WANG, Jianjun CAO, Liyong ZHANG, Yaqi LIU, Haoshu LING, Yujie XU, Liang WANG, Xuezhi ZHOU, Ningning XIE, Haisheng CHEN. Review on application of cold storage and heat storage technology based on distributed energy system[J]. Energy Storage Science and Technology, 2020, 9(6): 1847-1857.
表1
典型显热材料技术特点"
材料 | 温度 范围/oC | 密度 /kg·m-3 | 比热容 /kJ·(kg·℃)-1 | 蓄能密度 /MJ·m-3·℃-1 | 材料成本 /元·kg-1 | 材料能量成本/元·MJ-1① | 成熟度 | 优点 | 缺点 |
---|---|---|---|---|---|---|---|---|---|
水 | 0~100 | 1000 | 4.2 | 4.2 | 0.01 | 0.03 | 商业应用 | 经济易得、无毒无害、环境友好、不燃、循环稳定性佳 | 使用温度低、存在凝固、沸腾等现象 |
导热油 | -30~400 | 700~900 | 2.2~3.6 | 1.54~3.24 | 2~80 | 1.6~105.7 | 商业应用 | 传热效率高、易于调控温度、基本无腐蚀 | 价格高、使用温度较低、易燃、蒸汽压大、易分解、寿命短 |
熔盐 | 130~850 | 1850~2100 | 1.5~1.8 | 2.00~3.78 | 3.5~20 | 4.1~19.3 | 商业应用 | 传热性能好、系统压力小、使用温度较高、价格低、安全可靠 | 容易凝固、冻堵管路、腐蚀性、部分有毒性 |
岩石 | <700 | 2000~2800 | 0.92 | 1.84~2.58 | 0.05~1.4 | 0.1~2.7 | 商业应用 | 廉价易得、无毒、不燃、热性能稳定、无腐蚀性 | 热效率较低、需要传热介质、循环稳定性较低 |
混凝土 | <550 | 1100~1800 | 0.6~1.1 | 0.66~1.98 | 0.3~1 | 0.8~4.6 | 示范应用 | 化学性能稳定、传热性较好、价格便宜 | 高温开裂、蓄热密度较差、需要传热介质 |
耐火砖 | <1200 | 1400~3000 | 1.0~1.2 | 1.4~3.6 | 7~12 | 6.1~12.5 | 商业应用 | 化学性能稳定、使用温度范围广、强度高 | 成本较高、需要传热介质 |
表2
典型相变潜热材料技术特点"
材料 | 材料成本 /元·kg-1 | 材料能量成本 /元·MJ-1 | 成熟度 | 优点 | 缺点 |
---|---|---|---|---|---|
共晶盐水溶液 | 0.5~5 | 1.9~31.3 | 商业应用 | 来源广、相变温度范围广、体积变化率小、价格便宜 | 过冷度大、腐蚀性强、循环稳定性差、相分离 |
冰 | 0.01 | 0.03 | 商业应用 | 无毒无害、环境友好、不燃、价格便宜、无腐蚀性 | 相变温度单一、体积变化较大 |
气体水溶液 | — | — | 实验室研究 | 蓄冷温度适宜、换热效率高 | 生长条件苛刻、诱导期长、生长速率慢 |
水合盐 | 1~10 | 1.7~62.5 | 商业应用 | 高热导率、相变体积变化小、热应力效应小、低毒性、价格低廉 | 相分离、过冷度较大、腐蚀性较强、长期运行循环稳定性较差 |
石蜡 | 6~15 | 21.4~83.3 | 商业应用 | 化学惰性和稳定性佳、体积变化和蒸气压较小、无腐蚀性、无相分离、无过冷 | 热导率低、和塑料材料不兼容、适度可燃性 |
脂肪酸 | 8~25 | 37.7~167.8 | 示范应用 | 价格较低、过冷度小、化学性质稳定、不发生相分离 | 热导率较低、循环稳定性差 |
糖醇 | 10~70 | 23.8~443 | 实验室研究 | 安全可靠、循环稳定性强、无腐蚀 | 价格较高、结晶特性差、较高过冷度 |
无机盐 | 2~15 | 1.7~75 | 实验室研究 | 成本低廉、导热性好、循环稳定性好 | 相变体积变化较大、部分强腐蚀性和毒性 |
表3
典型热化学材料技术特点"
材料 | 作用机理 | 工作 温度/℃ | 蓄热密度 /MJ·m-3 | 技术成熟度 | 优点 | 缺点 |
---|---|---|---|---|---|---|
LiBr+H2O | 吸收 | — | 263 | 商业应用 | 热力学性能佳、环境友好 | 结晶、腐蚀和循环性能低 |
MgSO4+H2O | 吸附 | — | 2808 | 实验室研究 | 无毒、无腐蚀性 | 不充分放热、化学反应动力学性能不佳 |
NH3/N2+H2 | 化学反应 | 100~700 | 2682 | 实验室研究 | 产物分离容易、无副反应发生 | H2和N2的长期安全储存问题、需使用催化剂、操作压力过高、反应不完全转化 |
Ca(OH)2/CaO+H2O | 化学反应 | 350~900 | 1573 | 实验室研究 | 无催化剂、储能密度高、可逆性好、常压操作、无副反应、产物分离容易、无毒 | 反应物易集聚和烧结、体积变化大、传热性能差 |
CH4/CO+H2 | 化学反应 | 700~860 | 28 | 实验室研究 | 高吸热特性、热效率高、吸收温室气体 | 有副反应、需要催化剂 |
CaCO3/CaO+CO2 | 化学反应 | 700~1000 | 2491 | 实验室研究 | 无催化剂、储能密度高、无副反应、产物分离容易、无毒 | 反应物易集聚和烧结、体积变化大、CO2储存问题、反应活性差、需要掺杂钛 |
MgH2/Mg+H2 | 化学反应 | 250~500 | 2088 | 实验室研究 | 良好可逆性、无副产物、反应体系易分离 | H2的储存问题、反应需要掺杂镍或铁催化剂、操作压力高、反应物易烧结 |
BaO2/BaO+O2 | 化学反应 | 690~780 | 1180 | 实验室研究 | 无催化剂、可获得高温热量、无副反应、产物分离容易、空气作为反应物 | 正逆反应转化不完全、试验反馈少 |
1 | 吴晓清, 叶彩花, 王根军, 等. 美国天然气分布式能源发展的影响因素分析及借鉴[J]. 环境保护, 2018, 46(2): 71-75. |
WU Xiaoqing, YE Caihua, WANG Genjun, et al. Analysis of natural gas combined heat and power system development impact factors in united states[J]. Environmental Protection, 2018, 46(2): 71-75. | |
2 | 任洪波, 杨涛, 吴琼, 等. 日本分布式能源互联网应用现状及其对中国的启示[J]. 中外能源, 2017, 22(12): 15-23. |
REN Hongbo, YANG Tao, WU Qiong, et al. Current status of distributed energy internet in japan and its enlightenment to China[J]. Sino-Global Energy, 2017, 22(12): 15-23. | |
3 | 黄宇. 分布式能源政策与产业发展研究[J]. 煤气与热力, 2018, 38(4): 24-27. |
HUANG Yu. Research on distributed energy policy and industrial development[J]. Gas and Heat, 2018, 38(4): 24-27. | |
4 | 龙惟定. 分布式能源热电联产"以热定电"的新理解[J]. 暖通空调, 2011, 41(2): 18-22. |
LONG Weiding. More understanding about the principal of "determining power by heating load" in heat and power cogeneration[J]. HV&AC, 2011, 41(2): 18-22. | |
5 | 冷光辉, 曹惠, 彭浩, 等. 储热材料研究现状及发展趋势[J]. 储能科学与技术, 2017, 6(5): 1058-1075. |
LENG Guanghui, CAO Hui, PENG Hao, et al. The new research progress of thermal energy storage materials[J]. Energy Storage Science and Technology, 2017, 6(5): 1058-1075. | |
6 | 张宏韬, 赵有璟, 张萍, 等. 硝酸熔盐储热材料在太阳能利用中的研究进展[J]. 材料导报, 2015, 29(1): 54-60. |
ZHANG Hongtao, ZHAO Youjing, ZHANG Ping, et al. Research progress of molten nitrate salts with application to solar energy utilization[J]. | |
Review Materials, 2015, 29(1): 54-60. | |
7 | 刘冠杰, 韩立鹏, 王永鹏, 等. 固体储热技术研究进展[J]. 应用能源技术, 2018(3): 1-4. |
LIU Guanjie, HAN Lipeng, WANG Yongpeng, et al. Research progress of solid thermal storage technology[J]. Applied Energy Technology, 2018(3): 1-4. | |
8 | 王海军, 赵雅静, 杨玉江, 等. 熔盐储能技术的研究及熔盐供暖技术的应用前景[J]. 广州化工, 2017, 45(15): 33-34. |
WANG Haijun, ZHAO Yajing, YANG Yujiang, et al. Study on molten salt storage systems and application prospect of heating system using molten salt storage system[J]. Guangzhou Chemical Industry, 2017, 45(15): 33-34. | |
9 | KRISHNA Y, FAIZAL M, SAIDUR R, et al. State-of-the-art heat transfer fluids for parabolic trough collector[J]. International Journal of Heat and Mass Transfer, 2020, 152: 119541. |
10 | WAS G S, PETTI D, UKAI S, et al. Materials for future nuclear energy systems [J]. Journal of Nuclear Materials, 2019, 527: 151837. |
11 | 凌浩恕, 何京东, 徐玉杰, 等. 清洁供暖储热技术现状与趋势[J]. 储能科学与技术. 2020, 9(3): 861-868. |
LING Haoshu, HE Jingdong, XU Yujie, et al. Status and prospect of thermal energy storage technology for clean heating[J]. Energy Storage Science and Technology, 2020, 9(3): 861-868. | |
12 | LING Haoshu, WANG Liang, CHEN Chao, et al. Effect of thermophysical properties correlation of phase change material on numerical modelling of agricultural building[J]. Applied Thermal Engineering, 2019, 157: 113579. |
13 | 凌浩恕, 陈超, 陈紫光, 等. 日光温室带竖向空气通道的太阳能相变蓄热墙体体系[J]. 农业机械学报, 2015(3): 336-343. |
LING Haoshu, CHEN Chao, CHEN Ziguang, et al. Performance of phase change material wall with vertical air channels integrating solar concentrators[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015(3): 336-343. | |
14 | 陈海生, 凌浩恕, 徐玉杰. 能源革命中的物理储能技术[J]. 中国科学院院刊, 2019(4): 450-459. |
CHEN Haisheng, LING Haoshu, XU Yujie. Physical energy storage technology in energy revolution[J]. Bulletin of Chinese Academy of Sciences, 2019(4): 450-459. | |
15 | 葛志伟, 叶锋, MATHIEU L, 等. 中高温储热材料的研究现状与展望[J]. 储能科学与技术, 2012, 1(2): 89-102. |
GE Zhiwei, YE Feng, MATHIEU L, et al. Recent progress and prospective of medium and high temperatures thermal energy storage materials[J]. Energy Storage Science and Technology, 2012, 1(2): 89-102. | |
16 | AKEIBER H, NEJAT P, MAJID M Z ABD, et al. A review on phase change material (PCM) for sustainable passive cooling in building envelopes[J]. Renewable & Sustainable Energy Reviews, 2016, 60: 1470-1497. |
17 | WANG Zhangyuan, QIU Feng, YANG Wansheng, et al. Applications of solar water heating system with phase change material[J]. Renewable & Sustainable Energy Reviews, 2015, 52: 645-652. |
18 | SILVA T, VICENTE R, RODRIGUES F. Literature review on the use of phase change materials in glazing and shading solutions[J]. Renewable & Sustainable Energy Reviews, 2016, 53: 515-535. |
19 | 杨天润, 孙锲, WENNERSTEN R, 等. 相变蓄冷材料的研究进展[J]. 工程热物理学报, 2018, 39(3): 567-573. |
YANG Tianrui, SUN Qie, WENNERSTEN R, et al. Review of phase change materials for cold thermal energy storage[J]. Journal of Engineering Thermophysics, 2018, 39(3): 567-573. | |
20 | 宋鹏翔, 丁玉龙. 化学热泵系统在储热技术中的理论与应用[J]. 储能科学与技术, 2014, 3(3): 227-235. |
SONG Pengxiang, DING Yulong. A review on theory and application of chemical heat pump in thermal energy storage[J]. Energy Storage Science and Technology, 2014, 3(3): 227-235. | |
21 | 闫霆, 王文欢, 王程遥. 化学储热技术的研究现状及进展[J]. 储能科学与技术, 2018, 37(12): 69-78. |
YAN Ting, WANG Wenhuan, WANG Chengyao. Research situation and progress on chemical heat storage technology[J]. Energy Storage Science and Technology, 2018, 37(12): 69-78. | |
22 | AYDIN D, CASEY S P, RIFFAT S. The latest advancements on thermochemical heat storage systems[J]. Renewable and Sustainable Energy Reviews, 2015, 41: 356-367. |
23 | CHEN Xiaoyi, ZHANG Zhen, QI Chonggang, et al. State of the art on the high-temperature thermochemical energy storage systems[J]. Energy Conversion and Management, 2018, 177: 792-815. |
24 | 吴娟, 龙新峰. 太阳能热化学储能研究进展[J]. 化工进展, 2014, 33(12): 3238-3245. |
WU Juan, LONG Xinfeng. Research progress of solar thermochemical energy storage[J]. Chemical Industry and Engineering Progress, 2014, 33(12): 3238-3245. | |
25 | 闫霆, 王文欢, 王如竹. 化学吸附储热技术的研究现状及进展[J]. 材料导报, 2018, 32(23): 4107-4115. |
YAN Ting, WANG Wenhuan, WANG Ruzhu. Present status and progress of research on chemical adsorption heat storage[J]. Materials Review, 2018, 32(23): 4107-4115. | |
26 | 杨岑玉, 张冲, 金翼, 等. 不同应用场景下的蓄冷技术[J]. 制冷与空调, 2017, 17(9): 87-90. |
YANG Cenyu, ZHANG Chong, JIN Yi, et al. Cool storage technology under different application situation[J]. Refrigeration and Air-Conditioning, 2017, 17(9): 87-90. | |
27 | 常丽, 马彦涛, 李文琴. 蓄冷系统在燃气分布式能源站中的应用[J]. 制冷与空调, 2017, 17(5): 62-65. |
CHANG Li, MA Yantao, LI Wenqin. Application of cold storage system to gas distribution energy station[J]. Refrigeration and Air-Conditioning, 2017, 17(5): 62-65. | |
28 | 王琅, 陆建峰, 王维龙, 等. 楼宇型蓄能联产系统热力学及经济性分析[J]. 工程热物理学报, 2017, 38(12): 2530-2536. |
WANG Lang, LU Jianfeng, WANG Weilong, , et al. The analysis of energy and economic performance of CCHP system with TES in buildings[J]. Journal of Engineering Thermophysics, 2017, 38(12): 2530-2536. | |
29 | 卢海勇, 虞正发, 刘波. 天然气分布式能源项目优化配置研究[J]. 上海节能, 2019(2): 90-96. |
LU Haiyong, YU Zhengfa, LIU Bo. Optimization configuration research on natural gas distributed energy project[J]. Shanghai Energy Conservation, 2019(2): 90-96. | |
30 | 李正茂, 陈晓丽. 楼宇型分布式能源系统在数据中心的应用[J]. 发电与空调, 2016, 37(6): 6-10. |
LI Zhengmao, CHEN Xiaoli. Utilization of building-type distributed energy system in data centers[J]. Power Generation & Air Condition, 2016, 37(6): 6-10. | |
31 | 马平. 天然气分布式供能和冰蓄冷系统在节能方面的应用[J]. 上海煤气, 2012(4): 21-23. |
MA Ping. The application on energy saving in natural gas distributed energy supply and ice storage system[J]. Shanghai Gas, 2012(4): 21-23. | |
32 | 秦渊, 陈昕, 王华超. 冰蓄冷空调系统在楼宇型分布式能源站的应用[J]. 煤气与热力, 2014, 34(5): 21-24. |
QIN Yuan, CHEN Xin, WANG Huachao. Application of ice storage air-conditioning system in building-type distributed energy station[J]. Gas & Heat, 2014, 34(5): 21-24. | |
33 | LUO Xi, LIU Yanfeng, LIU Jiaping, et al. Optimal design and cost allocation of a distributed energy resource (der) system with district energy networks: a case study of an isolated island in the South China Sea[J]. Sustainable Cities and Society, 2019, 51: 101726. |
34 | DI SOMMA M, YAN Bing, BIANCO N, et al. Multi-objective operation optimization of a distributed energy system for a large-scale utility customer[J]. Applied Thermal Engineering, 2016, 101: 752-761. |
35 | 潘雪竹, 冯国会, 于水, 等. 基于分布式能源的冷热供应系统研究[J]. 供热制冷, 2016(6): 18-20. |
36 | 程杉, 黄天力, 魏荣宗. 含冰蓄冷空调的冷热电联供型微网多时间尺度优化调度[J]. 电力系统自动化, 2019, 43(5): 30-40. |
CHEN Shan, HUANG Tianli, WEIRongzong. Multi-time-scale optimal scheduling of CCHP micro grid with ice-storage air-conditioning[J]. Automation of Electric Power Systems, 2019, 43(5): 30-40. | |
37 | TESTI D, CONTI P, SCHITO E, et al. Synthesis and optimal operation of smart microgrids serving a cluster of buildings on a campus with centralized and distributed hybrid renewable energy units[J]. Energies, 2019, 12: 7454. |
38 | WU Qiong, REN Hongbo, GAO Weijun, et al. Multi-objective optimization of a distributed energy network integrated with heating interchange[J]. Energy, 2016, 109: 353-364. |
39 | BLARKE M B. Towards an intermittency-friendly energy system: Comparing electric boilers and heat pumps in distributed cogeneration[J]. Applied Energy, 2012, 91(1): 349-365. |
40 | 赵静, 杨洪海, 叶大法, 等. 基于三联供优先的分布式能源系统实例[J]. 煤气与热力, 2016, 36(11): 4-8. |
ZHAO Jing, YANG Honghai, YE Dafa, et al. Case of distributed energy system based on CCHP priority[J]. Gas & Heat, 2016, 36(11): 4-8. | |
41 | 彭怡峰, 张浩, 曾蓉, 等. 微电网蓄热储能消纳弃风的运行模型[J]. 供用电, 2016, 33(7): 74-78. |
PENG Yifeng, ZHANG Hao, ZENG Rong, et al. A joint operation model of combining heat storage and CCHP to promote accommodation of wind power in microgrid[J]. Distribution & Utilization, 2016, 33(7): 74-78. | |
42 | 杨志鹏, 张峰, 梁军, 等. 含热泵和储能的冷热电联供型微网经济运行[J]. 电网技术, 2018(6): 1735-1742. |
YANG Zhipeng, ZHANG Feng, LIANG Jun, et al. Economic generation scheduling of CCHP microgrid with heat pump and energy storage[J]. Power System Technology, 2018(6): 1735-1742. | |
43 | MAVROMATIDIS G, OREHOUNIG K, CARMELIET J. Uncertainty and global sensitivity analysis for the optimal design of distributed energy systems[J]. Applied Energy, 2018, 214: 219-238. |
44 | DI SOMMA M, YAN Bing, BIANCO N, et al. Multi-objective design optimization of distributed-energy systems through cost and exergy assessments[J]. Applied Energy, 2017, 204: 1299-1316. |
45 | 颜飞龙. 饱和水蓄热器在太阳能热发电技术中的应用[J]. 能源工程, 2014(6): 43-47. |
YAN Feilong. Application of saturated water storage device in solar thermal power technology [J]. Energy Engineering, 2014(6): 43-47. | |
46 | 熊新强, 杜明俊, 张志贵, 等. 太阳能光热发电熔盐储罐选材、防腐与绝热技术研究[J]. 石油化工高等学校学报, 2017(6): 61-65. |
XIONG Xinqiang, DU Mingjun. ZHANG Zhigui,et al. Research on material selection, anticorrosion and thermal insulation technology of solar thermal power generation molten salt storage tank[J]. Journal of Petrochemical Universities, 2017(6): 61-65. | |
47 | MONTES M J, ABANADES A, MARTINEZ-VAL J M. Thermofluidynamic model and comparative analysis of parabolic trough collectors using oil, water/steam, or molten salt as heat transfer fluids[J]. Journal of Solar Energy Engineering-Transactions of the ASME, 2010, 132: 0210012. |
48 | 王慧富, 吴玉庭, 张晓明, 等. 槽式太阳能热发电站的模拟优化[J]. 太阳能学报, 2018, 39(7): 1788-1796. |
WANG Huifu, WU Yuting, ZHANG Xiaoming, et al. Simulation and optimization of parabolic trough solar power plants[J]. Acta Energiae Solaris Sinica, 2018, 39(7): 1788-1796. | |
49 | 吴玉庭, 张晓明, 王慧富, 等. 基于弃风弃光或低谷电加热的熔盐蓄热供热技术及其评价[J]. 中外能源, 2017, 22(2): 93-99. |
WU Yuting, ZHANG Xiaoming, WANG Huifu, et al. Molten salt heat storage and supply technology based on heating using abandoned wind power, PV power or off-peak power[J]. Sino-Global Energy, 2017, 22(2): 93-99. | |
50 | 周宇昊, 张海珍, 宋胜男. 多能互补分布式能源试验平台系统关键技术研究[J]. 发电与空调, 2017, 38(6): 5-9. |
ZHOU Yuhao, ZHANG Haizhen, SONG Shengnan. Research on key technologies of multi energy complementary distributed energy experimental platform system[J]. Power Generation & Air Condition, 2017, 38(6): 5-9. | |
51 | 俞铁铭, 周宇昊. 基于蓄热技术的天然气分布式能源系统设计与模拟研究[J]. 节能, 2016, 35(6): 59-61. |
YU Tieming, ZHOU Yuhao. The design and simulation of natural gas distributed energy system based on heat storage technology[J]. Energy Conservation, 2016, 35(6): 59-61. | |
52 | 卓思文. 蓄热型热电冷联供系统全工况设计及蓄热单元优化[D]. 北京: 清华大学, 2014. |
ZHUO Siwen. Research on overall design of building cooling heating and power (BCHP) system with thermal energy storage (TES) and optimization of TES unit[D]. Beijing: Tsinghua University, 2014. | |
53 | 李志永, 陈超, 张叶, 等. 太阳能-相变蓄热-新风供暖系统仿真优化设计研究[J]. 太阳能学报, 2012, 33(5): 852-859. |
LI Zhiyong, CHEN Chao, ZHANG Ye, et al. Simulation optimization research on solar energy-phase change thermal storage-fresh air heating system[J]. Acta Energiae Solaris Sinica, 2012, 33(5): 852-859. | |
54 | BAI Zhang, LIU Qibin, GONG Liang, et al. Application of a mid-/low-temperature solar thermochemical technology in the distributed energy system with cooling, heating and power production[J]. Applied Energy, 2019, 253: 113491. |
[1] | 杜保存, 黄丽娟, 雷勇刚, 宋翀芳, 王飞. 填充床熔盐蓄热器的动态温度与应力特性[J]. 储能科学与技术, 2022, 11(7): 2141-2150. |
[2] | 叶文兰, 赵明, 胡明禹, 田扬. 管束式相变蓄热器的蓄放热性能分析[J]. 储能科学与技术, 2022, 11(7): 2151-2160. |
[3] | 李荣, 孙志高, 宋佳. 氨基酸侧链对HCFC-141b水合物形成的影响[J]. 储能科学与技术, 2022, 11(7): 2126-2132. |
[4] | 李仲博, 汉京晓, 王成成, 杨慧, 杨娜, 尹少武, 王立, 童莉葛, 唐志伟, 丁玉龙. 热化学反应器放热过程模拟及参数影响规律[J]. 储能科学与技术, 2022, 11(7): 2133-2140. |
[5] | 吴玉庭, 寇真峰, 张灿灿, 吴伊洋. 列管式固体氯化钠蓄冷换热器动态分布参数分析[J]. 储能科学与技术, 2022, 11(6): 1988-1995. |
[6] | 郝金鹏, 杜迎春, 伍弘, 和琨, 汪垒. 侧壁面正弦加热条件下电场强化固液相变研究[J]. 储能科学与技术, 2022, 11(5): 1446-1454. |
[7] | 杨娜, 王成成, 杨慧, 胡志昊, 童莉葛, 李仲博, 王立, 丁玉龙, 李娜. 基于热化学反应的硅胶非等温动力学计算及储热性能分析[J]. 储能科学与技术, 2022, 11(5): 1331-1338. |
[8] | 张永学, 王梓熙, 鲁博辉, 杨胜旗, 赵泓宇. 雪花型翅片提高相变储热单元储/放热性能[J]. 储能科学与技术, 2022, 11(2): 521-530. |
[9] | 杜昭, 阳康, 舒高, 韦攀, 杨肖虎. 金属泡沫内石蜡固液相变蓄热/放热实验[J]. 储能科学与技术, 2022, 11(2): 531-537. |
[10] | 杨慧慧, 曾立, 汤波, 王小青, 陆勇. 谷电利用复合石蜡蓄热材料的制备及供暖墙体构造实验[J]. 储能科学与技术, 2022, 11(1): 19-29. |
[11] | 徐钿昕, 田希坤, 闫君, 叶强, 赵长颖. TiO2改性的CaCO3热化学储热的反应性能[J]. 储能科学与技术, 2022, 11(1): 1-8. |
[12] | 傅德坤, 宋文吉, 陈明彪, 冯自平. 跨季节蓄冷技术及在设施农业应用的经济性分析[J]. 储能科学与技术, 2021, 10(6): 2385-2391. |
[13] | 杨博文, 闫君, 赵长颖. 氢氧化镁热化学储热系统流化床反应器性能分析[J]. 储能科学与技术, 2021, 10(5): 1735-1744. |
[14] | 韩翔宇, 王亮, 葛志伟, 凌浩恕, 林曦鹏, 陈海生, 彭珑. Co3O4/CoO氧化还原反应储/释热动力学特性[J]. 储能科学与技术, 2021, 10(5): 1701-1708. |
[15] | 吴玉庭, 宋阁阁, 张灿灿, 寇真峰, 鹿院卫. 超临界压缩空气储能系统蓄冷换热器优化设计[J]. 储能科学与技术, 2021, 10(4): 1374-1379. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||