1 |
YANG Z G, ZHANG J L, KINTNER-MEYER M C W, et al. Electrochemical energy storage for green grid[J]. Chemical Reviews, 2011, 111(5): 3577-3613.
|
2 |
YANG Z G, LIU J, BASKARAN S, et al. Enabling renewable energy—and the future grid—with advanced electricity storage[J]. JOM, 2010, 62(9): 14-23.
|
3 |
CHOI J W, AURBACH D. Promise and reality of post-lithium-ion batteries with high energy densities[J]. Nature Reviews Materials, 2016, 1: 16013.
|
4 |
SIMON P, GOGOTSI Y. Perspectives for electrochemical capacitors and related devices[J]. Nature Materials, 2020, 19(11): 1151-1163.
|
5 |
NOORI A, EL-KADY M F, RAHMANIFAR M S, et al. Towards establishing standard performance metrics for batteries, supercapacitors and beyond[J]. Chemical Society Reviews, 2019, 48(5): 1272-1341.
|
6 |
IKE I S, SIGALAS I, IYUKE S. Understanding performance limitation and suppression of leakage current or self-discharge in electrochemical capacitors: A review[J]. Physical Chemistry Chemical Physics, 2016, 18(2): 661-680.
|
7 |
LIU K L, YU C, GUO W, et al. Recent research advances of self-discharge in supercapacitors: Mechanisms and suppressing strategies[J]. Journal of Energy Chemistry, 2021, 58: 94-109.
|
8 |
SMITH P H, TRAN T N, JIANG T L, et al. Lithium-ion capacitors: Electrochemical performance and thermal behavior[J]. Journal of Power Sources, 2013, 243: 982-992.
|
9 |
ZHONG C, DENG Y D, HU W B, et al. A review of electrolyte materials and compositions for electrochemical supercapacitors[J]. Chemical Society Reviews, 2015, 44(21): 7484-7539.
|
10 |
RAZA W, ALI F, RAZA N, et al. Recent advancements in supercapacitor technology[J]. Nano Energy, 2018, 52: 441-473.
|
11 |
SUN X Z, AN Y B, GENG L B, et al. Leakage Current and self-discharge in lithium-ion capacitor[J]. Journal of Electroanalytical Chemistry, 2019, 850: 113386.
|
12 |
ZAKHIDOV A A, SUH D S, KUZNETSOV A A, et al. Electrochemically tuned properties for electrolyte-free carbon nanotube sheets[J]. Advanced Functional Materials, 2009, 19(14): 2266-2272.
|
13 |
CONWAY B E, PELL W G, LIU T C. Diagnostic analyses for mechanisms of self-discharge of electrochemical capacitors and batteries[J]. Journal of Power Sources, 1997, 65(1/2): 53-59.
|
14 |
DE LEVIE R. On porous electrodes in electrolyte solutions[J]. Electrochimica Acta, 1963, 8(10): 751-780.
|
15 |
MADABATTULA G, KUMAR S. Insights into charge-redistribution in double layer capacitors[J]. Journal of the Electrochemical Society, 2018, 165(3): A636-A649.
|
16 |
HAO C L, WANG X F, YIN Y J, et al. Analysis of charge redistribution during self-discharge of double-layer supercapacitors[J]. Journal of Electronic Materials, 2016, 45(4): 2160-2171.
|
17 |
GRAYDON J W, PANJEHSHAHI M, KIRK D W. Charge redistribution and ionic mobility in the micropores of supercapacitors[J]. Journal of Power Sources, 2014, 245: 822-829.
|
18 |
KAUS M, KOWAL J, SAUER D U. Modelling the effects of charge redistribution during self-discharge of supercapacitors[J]. Electrochimica Acta, 2010, 55(25): 7516-7523.
|
19 |
陈雪龙, 张希, 许传华, 等. 大容量动力型超级电容器存储性能[J]. 储能科学与技术, 2021, 10(1): 198-201.
|
|
CHEN X L, ZHANG X, XU C H, et al. Storage performance of large-capacitance power supercapacitor[J]. Energy Storage Science and Technology, 2021, 10(1): 198-201.
|
20 |
MADABATTULA G, KUMAR S. Model and measurement based insights into double layer capacitors: Voltage-dependent capacitance and low ionic conductivity in pores[J]. Journal of the Electrochemical Society, 2020, 167(8): 080535.
|
21 |
BLACK J M, ANDREAS H A. Pore shape affects spontaneous charge redistribution in small pores[J]. The Journal of Physical Chemistry C, 2010, 114(27): 12030-12038.
|
22 |
BU Y F, SUN T, CAI Y J, et al. Compressing carbon nanocages by capillarity for optimizing porous structures toward ultrahigh-volumetric-performance supercapacitors[J]. Advanced Materials, 2017, 29(24): 1700470.
|
23 |
贾志军, 王俊, 王毅. 超级电容器电极材料的研究进展[J]. 储能科学与技术, 2014, 3(4): 322-338.
|
|
JIA Z J, WANG J, WANG Y. Research progress of the electrode materials for electrochemical capacitors[J]. Energy Storage Science and Technology, 2014, 3(4): 322-338.
|
24 |
ANDREAS H A. Self-discharge in electrochemical capacitors: A perspective article[J]. Journal of the Electrochemical Society, 2015, 162(5): A5047-A5053.
|
25 |
OICKLE A M, TOM J, ANDREAS H A. Carbon oxidation and its influence on self-discharge in aqueous electrochemical capacitors[J]. Carbon, 2016, 110: 232-242.
|
26 |
KIERZEK K, FRACKOWIAK E, LOTA G, et al. Electrochemical capacitors based on highly porous carbons prepared by KOH activation[J]. Electrochimica Acta, 2004, 49(4): 515-523.
|
27 |
LIU T C, PELL W G, CONWAY B E. Self-discharge and potential recovery phenomena at thermally and electrochemically prepared RuO2 supercapacitor electrodes[J]. Electrochimica Acta, 1997, 42(23/24): 3541-3552.
|
28 |
YANG H Z, ZHANG Y. Self-discharge analysis and characterization of supercapacitors for environmentally powered wireless sensor network applications[J]. Journal of Power Sources, 2011, 196(20): 8866-8873.
|
29 |
RICKETTS B W, TON-THAT C. Self-discharge of carbon-based supercapacitors with organic electrolytes[J]. Journal of Power Sources, 2000, 89(1): 64-69.
|
30 |
HESS L H, WITTSCHER L, BALDUCCI A. The impact of carbonate solvents on the self-discharge, thermal stability and performance retention of high voltage electrochemical double layer capacitors[J]. Physical Chemistry Chemical Physics, 2019, 21(18): 9089-9097.
|
31 |
KAZARYAN S A, LITVINENKO S V, KHARISOV G G. Self-discharge of heterogeneous electrochemical supercapacitor of PbO2∣H2SO4∣C related to manganese and titanium ions[J]. Journal of the Electrochemical Society, 2008, 155(6): A464.
|
32 |
OICKLE A M, ANDREAS H A. Examination of water electrolysis and oxygen reduction as self-discharge mechanisms for carbon-based, aqueous electrolyte electrochemical capacitors[J]. The Journal of Physical Chemistry C, 2011, 115(10): 4283-4288.
|
33 |
ZHANG W, YANG W, ZHOU H H, et al. Self-discharge of supercapacitors based on carbon nanotubes with different diameters[J]. Electrochimica Acta, 2020, 357: 136855.
|
34 |
ZHANG Q, RONG J P, MA D S, et al. The governing self-discharge processes in activated carbon fabric-based supercapacitors with different organic electrolytes[J]. Energy & Environmental Science, 2011, 4(6): 2152.
|
35 |
ZHANG Q, RONG J P, WEI B Q. A divided potential driving self-discharge process for single-walled carbon nanotube based supercapacitors[J]. RSC Advances, 2011, 1(6): 989.
|
36 |
LAHEÄÄR A, ARENILLAS A, BÉGUIN F. Change of self-discharge mechanism as a fast tool for estimating long-term stability of ionic liquid based supercapacitors[J]. Journal of Power Sources, 2018, 396: 220-229.
|
37 |
JAMIESON L, ROY T, WANG H Z. Postulation of optimal charging protocols for minimal charge redistribution in supercapacitors based on the modelling of solid phase charge density[J]. Journal of Energy Storage, 2021, 33: 102075.
|
38 |
ZHANG Q, CAI C, QIN J W, et al. Tunable self-discharge process of carbon nanotube based supercapacitors[J]. Nano Energy, 2014, 4: 14-22.
|
39 |
WANG J, DING B, HAO X D, et al. A modified molten-salt method to prepare graphene electrode with high capacitance and low self-discharge rate[J]. Carbon, 2016, 102: 255-261.
|
40 |
YUAN S T, HUANG X H, WANG H, et al. Structure evolution of oxygen removal from porous carbon for optimizing supercapacitor performance[J]. Journal of Energy Chemistry, 2020, 51: 396-404.
|
41 |
HE Y T, ZHANG Y H, LI X F, et al. Capacitive mechanism of oxygen functional groups on carbon surface in supercapacitors[J]. Electrochimica Acta, 2018, 282: 618-625.
|
42 |
DAVIS M A, ANDREAS H A. Identification and isolation of carbon oxidation and charge redistribution as self-discharge mechanisms in reduced graphene oxide electrochemical capacitor electrodes[J]. Carbon, 2018, 139: 299-308.
|
43 |
MISHRA R K, CHOI G J, SOHN Y, et al. Nitrogen-doped reduced graphene oxide as excellent electrode materials for high performance energy storage device applications[J]. Materials Letters, 2019, 245: 192-195.
|
44 |
LIU D, FU C P, ZHANG N S, et al. Porous nitrogen-doped graphene for high energy density supercapacitors in an ionic liquid electrolyte[J]. Journal of Solid State Electrochemistry, 2017, 21(3): 759-766.
|
45 |
MISHRA R K, CHOI G J, SOHN Y, et al. A novel RGO/N-RGO supercapacitor architecture for a wide voltage window, high energy density and long-life via voltage holding tests[J]. Chemical Communications (Cambridge, England), 2020, 56(19): 2893-2896.
|
46 |
TEVI T, YAGHOUBI H, WANG J, et al. Application of poly (p-phenylene oxide) as blocking layer to reduce self-discharge in supercapacitors[J]. Journal of Power Sources, 2013, 241: 589-596.
|
47 |
WANG Y Z, SHAN X Y, WANG D W, et al. Mitigating self-discharge of carbon-based electrochemical capacitors by modifying their electric-double layer to maximize energy efficiency[J]. Journal of Energy Chemistry, 2019, 38: 214-218.
|
48 |
GANDLA D, SONG G H, WU C R, et al. Atomic layer deposition (ALD) of alumina over activated carbon electrodes enabling a stable 4 V supercapacitor operation[J]. ChemistryOpen, 2021, 10(4): 402-407.
|
49 |
CHUNG J, PARK H, JUNG C. Electropolymerizable isocyanate-based electrolytic additive to mitigate diffusion-controlled self-discharge for highly stable and capacitive activated carbon supercapacitors[J]. Electrochimica Acta, 2021, 369: 137698.
|
50 |
GE K K, LIU G M. Suppression of self-discharge in solid-state supercapacitors using a zwitterionic gel electrolyte[J]. Chemical Communications (Cambridge, England), 2019, 55(50): 7167-7170.
|
51 |
WANG Z X, CHU X, XU Z, et al. Extremely low self-discharge solid-state supercapacitors via the confinement effect of ion transfer[J]. Journal of Materials Chemistry A, 2019, 7(14): 8633-8640.
|
52 |
WANG H Y, ZHOU Q Q, YAO B W, et al. Suppressing the self-discharge of supercapacitors by modifying separators with an ionic polyelectrolyte[J]. Advanced Materials Interfaces, 2018, 5(10): 1701547.
|
53 |
ZHAO C Y, SUN X D, LI W S, et al. Reduced self-discharge of supercapacitors using piezoelectric separators[J]. ACS Applied Energy Materials, 2021, 4(8): 8070-8075.
|
54 |
WANG K P, YAO L L, JAHON M, et al. Ion-exchange separators suppressing self-discharge in polymeric supercapacitors[J]. ACS Energy Letters, 2020, 5(10): 3276-3284.
|
55 |
SUN X Z, ZHANG X, ZHANG H T, et al. Application of a novel binder for activated carbon-based electrical double layer capacitors with nonaqueous electrolytes[J]. Journal of Solid State Electrochemistry, 2013, 17(7): 2035-2042.
|
56 |
AVIREDDY H, BYLES B W, PINTO D, et al. Stable high-voltage aqueous pseudocapacitive energy storage device with slow self-discharge[J]. Nano Energy, 2019, 64: 103961.
|
57 |
HAQUE M, LI Q, SMITH A D, et al. Self-discharge and leakage current mitigation of neutral aqueous-based supercapacitor by means of liquid crystal additive[J]. Journal of Power Sources, 2020, 453: 227897.
|
58 |
LIU M Y, XIA M Y, QI R J, et al. Lyotropic liquid crystal as an electrolyte additive for suppressing self-discharge of supercapacitors[J]. ChemElectroChem, 2019, 6(9): 2531-2535.
|
59 |
XIA M Y, NIE J H, ZHANG Z L, et al. Suppressing self-discharge of supercapacitors via electrorheological effect of liquid crystals[J]. Nano Energy, 2018, 47: 43-50.
|
60 |
HUANG Z D, WANG T R, SONG H, et al. Effects of anion carriers on capacitance and self-discharge behaviors of zinc ion capacitors[J]. Angewandte Chemie International Edition, 2021, 60(2): 1011-1021.
|