储能科学与技术 ›› 2022, Vol. 11 ›› Issue (7): 2114-2125.doi: 10.19799/j.cnki.2095-4239.2021.0688

• 储能材料与器件 • 上一篇    下一篇

超级电容器自放电的研究进展

王宇作1,2(), 卢颖莉2, 邓苗3, 杨斌4, 于学文2, 荆葛2, 阮殿波5,6()   

  1. 1.天津大学化工学院,天津 300072
    2.宁波中车新能源科技有限公司,浙江 宁波 315112
    3.中国人民解放军95979部队,山东 泰安 271207
    4.宁波瞬能科技有限公司,浙江
    5.宁波 315048,宁波大学,先进储能技术与装备研究院,浙江 宁波 315211
    6.清华大学材料学院,北京 100084
  • 收稿日期:2021-12-20 修回日期:2021-12-29 出版日期:2022-07-05 发布日期:2022-06-29
  • 通讯作者: 阮殿波 E-mail:396755221@qq.com;ruandianbo@nbu.edu.cn
  • 作者简介:王宇作(1990—),男,博士,研究方向为电化学储能,E-mail:396755221@qq.com
  • 基金资助:
    轨道交通车辆制动能量回馈关键技术(2019B10045)

Research progress of self-discharge in supercapacitors

Yuzuo WANG1,2(), Yinli LU2, Miao DENG3, Bin YANG4, Xuewen YU2, Ge JIN2, Dianbo RUAN5,6()   

  1. 1.School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
    2.Ningbo CRRC New Energy Technology Co. , Ltd. , Ningbo 315112, Zhejiang, China
    3.Unit 95979 of the PLA, Tai'an 271207, Shandong, China
    4.Ningbo Shunneng Technology Co. , Ltd. , Ningbo 315048, Zhejiang, China
    5.Ningbo University, Advanced Research Institute for Energy Storage Technology and Equipment, Ningbo 315211, Zhejiang, China
    6.School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
  • Received:2021-12-20 Revised:2021-12-29 Online:2022-07-05 Published:2022-06-29
  • Contact: Dianbo RUAN E-mail:396755221@qq.com;ruandianbo@nbu.edu.cn

摘要:

自放电是评价超级电容器性能的重要指标之一,显著影响超级电容器在实际使用过程中的能量转换效率。理解超级电容器的自放电机理,建立准确的自放电模型,从而开发针对性的改进方法,对提高超级电容器的实用性至关重要。然而,当前大量的研究工作集中于提高超级电容器的能量密度和功率密度,对其自放电性能的关注较少。因此,本文综述了近年来超级电容器自放电研究工作的进展,着重介绍了电荷再分布、活化控制、扩散控制及电势驱动等自放电机制的数学模型及其影响因素,并从充电协议、表面化学改性、电极包覆、电解液/隔膜改性等方面总结了当前的自放电抑制策略,以期促进相关研究方向的发展。本文指出未来相关工作应在三个方面展开:首先,需要根据不同的应用需求建立完善的自放电评价体系;其次,需要将自放电的仿真模拟与先进的表征技术相结合,建立不同自放电机制的准确识别方法,并对其起因进行追溯;最后,需要根据自放电机制的不同,发展针对性的优化方法,实现自放电和其他电化学性能的同时优化。

关键词: 超级电容器, 自放电, 多孔碳, 双电层

Abstract:

Having a substantial impact on the energy conversion efficiency of supercapacitors, self-discharge is an essential metric to consider when evaluating their performance. Understanding the self-discharge mechanism, creating realistic simulation models, and designing optimal procedures are all necessary for supercapacitors to be practical. However, many types of research were just concentrated on the improvement of other parameters, e.g., energy/power density and lifespan. Less attention has been paid to the self-discharge performance of supercapacitors. Consequently, the progress of supercapacitor self-discharge research in recent years is discussed in this work to support the growth of self-discharge research. The influencing factors and mathematic models for different self-discharge mechanisms (charge redistribution, activation control, diffusion control, and potential driving) are summarized in detail. Self-discharge limitation approaches using several tactics (charging proposal, surface-chemistry alteration, electrode coating, and functional electrolyte/separator) are also discussed. This paper emphasizes that the corresponding works should be performed in three aspects in the future: First, it is necessary to develop an accurate evaluation system of self-discharge according to various application requirements. Second, to build a reliable identification technique for distinct self-discharge processes and identify their origins, simulation approaches must be combined with modern characterization technologies. Finally, it is necessary to establish specific optimization methods according to the different self-discharge mechanisms to achieve the simultaneous optimization of self-discharge and other electrochemical performances.

Key words: supercapacitor, self-discharge, porous carbon, electric double-layer

中图分类号: