1 |
ARMAND M, TARASCON J M. Building better batteries[J]. Nature, 2008, 451(7179): 652-657.
|
2 |
YANG Z G, ZHANG J L, KINTNER-MEYER M C W, et al. Electrochemical energy storage for green grid[J]. Chemical Reviews, 2011, 111(5): 3577-3613.
|
3 |
DUNN B, KAMATH H, TARASCON J M. Electrical energy storage for the grid: A battery of choices[J]. Science, 2011, 334(6058): 928-935.
|
4 |
HU M, PANG X L, ZHOU Z. Recent progress in high-voltage lithium ion batteries[J]. Journal of Power Sources, 2013, 237: 229-242.
|
5 |
WANG P F, YOU Y, YIN Y X, et al. Layered oxide cathodes for sodium-ion batteries: Phase transition, air stability, and performance[J]. Advanced Energy Materials, 2018, 8(8): doi:10.1002/aenm.201701912.
|
6 |
ZHANG X, YANG Y A, ZHOU Z. Towards practical lithium-metal anodes[J]. Chemical Society Reviews, 2020, 49(10): 3040-3071.
|
7 |
ETACHERI V, MAROM R, ELAZARI R, et al. Challenges in the development of advanced Li-ion batteries: A review[J]. Energy & Environmental Science, 2011, 4(9): 3243-3262.
|
|
ETACHERI V, MAROM R, ELAZARI R, et al. Challenges in the development of advanced Li-ion batteries: A review[J]. Energy & Environmental Science, 2011, 4(9): 3243.
|
8 |
XIAO Y, LEE S H, SUN Y K. The application of metal sulfides in sodium ion batteries[J]. Advanced Energy Materials, 2017, 7(3): doi:10.1002/aenm.201601329.
|
9 |
YANG M, ZHONG Y R, BAO J, et al. Achieving battery-level energy density by constructing aqueous carbonaceous supercapacitors with hierarchical porous N-rich carbon materials[J]. Journal of Materials Chemistry A, 2015, 3(21): 11387-11394.
|
10 |
DE LA LLAVE E, BORGEL V, PARK K J, et al. Comparison between Na-ion and Li-ion cells: Understanding the critical role of the cathodes stability and the anodes pretreatment on the cells behavior[J]. ACS Applied Materials & Interfaces, 2016, 8(3): 1867-1875.
|
11 |
HU Z, ZHU Z Q, CHENG F Y, et al. Pyrite FeS2 for high-rate and long-life rechargeable sodium batteries[J]. Energy & Environmental Science, 2015, 8(4): 1309-1316.
|
12 |
KIM S W, SEO D H, MA X H, et al. Electrode materials for rechargeable sodium-ion batteries: Potential alternatives to current lithium-ion batteries[J]. Advanced Energy Materials, 2012, 2(7): 710-721.
|
13 |
SONG W X, JI X B, WU Z P, et al. First exploration of Na-ion migration pathways in the NASICON structure Na3V2(PO4)3[J]. Journal of Materials Chemistry A, 2014, 2(15): 5358.
|
14 |
WARNER T E, MILIUS W, MAIER J. New copper phosphates with the NASICON or alluaudite-type structures as ionic or mixed conductors[J]. Solid State Ionics, 1994, 74(3/4): 119-123.
|
15 |
GUO J Z, WANG P F, WU X L, et al. High-energy/power and low-temperature cathode for sodium-ion batteries: In situ XRD study and superior full-cell performance[J]. Advanced Materials, 2017, 29(33). doi:10.1002.adma.201701968.
|
16 |
LIU Q, WANG D X, YANG X, et al. Carbon-coated Na3V2(PO4)2F3 nanoparticles embedded in a mesoporous carbon matrix as a potential cathode material for sodium-ion batteries with superior rate capability and long-term cycle life[J]. Journal of Materials Chemistry A, 2015, 3(43): 21478-21485.
|
17 |
BIANCHINI M, FAUTH F, BRISSET N, et al. Comprehensive investigation of the Na3V2(PO4)2F3-NaV2(PO4)2F3 system by operando high resolution synchrotron X-ray diffraction[J]. Chemistry of Materials, 2015, 27(8): 3009-3020.
|
18 |
SERRAS P, PALOMARES V, ALONSO J, et al. Electrochemical Na extraction/insertion of Na3V2O2 x(PO4)2F3-2 x[J]. Chemistry of Materials, 2013, 25(24): 4917-4925.
|
19 |
YI H M, LING M X, XU W B, et al. VSC-doping and VSU-doping of Na3V2- xTix(PO4)2F3 compounds for sodium ion battery cathodes: Analysis of electrochemical performance and kinetic properties[J]. Nano Energy, 2018, 47: 340-352.
|
20 |
XIANG X D, LU Q Q, HAN M, et al. Superior high-rate capability of Na3(VO0.5)2(PO4)2F2 nanoparticles embedded in porous graphene through the pseudocapacitive effect[J]. Chemical Communications, 2016, 52(18): 3653-3656.
|
21 |
JIN H Y, DONG J, UCHAKER E, et al. Three dimensional architecture of carbon wrapped multilayer Na3V2O2(PO4)2F nanocubes embedded in graphene for improved sodium ion batteries[J]. Journal of Materials Chemistry A, 2015, 3(34): 17563-17568.
|
22 |
WEI T Y, YANG G Z, WANG C X. Bottom-up assembly of strongly-coupled Na3V2(PO4)3/C into hierarchically porous hollow nanospheres for high-rate and-stable Na-ion storage[J]. Nano Energy, 2017, 39: 363-370.
|
23 |
KUMAR P R, JUNG Y H, KIM D K. Influence of carbon polymorphism towards improved sodium storage properties of Na3V2O2 x(PO4)2F3-2 x[J]. Journal of Solid State Electrochemistry, 2017, 21(1): 223-232.
|
24 |
PARK S, SONG J J, KIM S, et al. Phase-pure Na3V2(PO4)2F3 embedded in carbon matrix through a facile polyol synthesis as a potential cathode for high performance sodium-ion batteries[J]. Nano Research, 2019, 12(4): 911-917.
|
25 |
KUMAR P R, JUNG Y H, WANG J E, et al. Na3V2O2(PO4)2F-MWCNT nanocomposites as a stable and high rate cathode for aqueous and non-aqueous sodium-ion batteries[J]. Journal of Power Sources, 2016, 324: 421-427.
|
26 |
ZHU C B, WU C, CHEN C C, et al. A high power-high energy Na3V2(PO4)2F3 sodium cathode: Investigation of transport parameters, rational design and realization[J]. Chemistry of Materials, 2017, 29(12): 5207-5215.
|
27 |
WANG C, SHEN W, LIU H M. Nitrogen-doped carbon coated Li3V2(PO4)3 derived from a facile in situ fabrication strategy with ultrahigh-rate stable performance for lithium-ion storage[J]. New Journal of Chemistry, 2014, 38(1): 430-436.
|
28 |
SHEN W, WANG C, XU Q J, et al. Nitrogen-doping-induced defects of a carbon coating layer facilitate Na-storage in electrode materials[J]. Advanced Energy Materials, 2015, 5(1): doi:10.1002/aenm.201400982.
|
29 |
NIE P, ZHU Y Y, SHEN L F. From biomolecule to Na3V2(PO4)3/nitrogen-decorated carbon hybrids: Highly reversible cathodes for sodium-ion batteries[J]. Journal of Materials Chemistry A, 2014, 2(43): 18606-18612.
|
30 |
ZHANG C L, LI H S, PING N, et al. Facile synthesis of nitrogen-doped carbon derived from polydopamine-coated Li3V2(PO4)3 as cathode material for lithium-ion batteries[J]. RSC Advances, 2014, 4(73): 38791-38796.
|
31 |
WANG C, WANG F X, LIU Z C, et al. N-doped carbon hollow microspheres for metal-free quasi-solid-state full sodium-ion capacitors[J]. Nano Energy, 2017, 41: 674-680.
|
32 |
ZHANG L L, MA D, LI T, et al. Polydopamine-derived nitrogen-doped carbon-covered Na3V2(PO4)2F3 cathode material for high-performance Na-ion batteries[J]. ACS Applied Materials & Interfaces, 2018, 10(43): 36851-36859.
|
33 |
SHIN W H, JEONG H M, KIM B G, et al. Nitrogen-doped multiwall carbon nanotubes for lithium storage with extremely high capacity[J]. Nano Letters, 2012, 12(5): 2283-2288.
|
34 |
CAI D D, WANG S Q, LIAN P C, et al. Superhigh capacity and rate capability of high-level nitrogen-doped graphene sheets as anode materials for lithium-ion batteries[J]. Electrochimica Acta, 2013, 90: 492-497.
|
35 |
ZHAO J, GAO Y, LIU Q, et al. High rate capability and enhanced cyclability of Na3V2(PO4)2F3 cathode by in situ coating of carbon nanofibers for sodium-ion battery applications[J]. Chemistry, 2018, 24(12): 2913-2919.
|
36 |
DU P, MI K, HU F D, et al. Hierarchical hollow microspheres Na3V2(PO4)2F3C@rGO as high-performance cathode materials for sodium ion batteries[J]. New Journal of Chemistry, 2020, 44(30): 12985-12992.
|
37 |
LI Y S, LIANG X H, ZHONG G B, et al. Fiber-shape Na3V2(PO4)2F3@N-doped carbon as a cathode material with enhanced cycling stability for Na-ion batteries[J]. ACS Applied Materials & Interfaces, 2020, 12(23): 25920-25929.
|
38 |
PI Y Q, GAN Z W, YAN M Y, et al. Insight into pre-sodiation in Na3V2(PO4)2F3/C@ hard carbon full cells for promoting the development of sodium-ion battery[J]. Chemical Engineering Journal, 2021, 413: doi:10.1016/j.cej.1020.127565.
|
49 |
LIANG K, WANG S J, ZHAO H S, et al. A facile strategy for developing uniform hierarchical Na3V2(PO4)2F3@carbonized polyacrylonitrile multi-clustered hollow microspheres for high-energy-density sodium-ion batteries[J]. Chemical Engineering Journal, 2022, 428: doi:10.1016/j.cej.2022.131780.
|
40 |
ZHANG Y, WANG T, TANG Y K, et al. In situ redox reaction induced firmly anchoring of Na3V2(PO4)2F3 on reduced graphene oxide & carbon nanosheets as cathodes for high stable sodium-ion batteries[J]. Journal of Power Sources, 2021, 516: doi:10.1016/j.jPowsour.2021.230515.
|
41 |
LIU Q, MENG X, WEI Z X, et al. Core/double-shell structured Na3V2(PO4)2F3@C nanocomposite as the high power and long lifespan cathode for sodium-ion batteries[J]. ACS Applied Materials & Interfaces, 2016, 8(46): 31709-31715.
|
42 |
PARK Y U, SEO D H, KWON H S, et al. A new high-energy cathode for a Na-ion battery with ultrahigh stability[J]. Journal of the American Chemical Society, 2013, 135(37): 13870-13878.
|
43 |
WU F, ZHU N, BAI Y, et al. Unveil the mechanism of solid electrolyte interphase on Na3V2(PO4)3 formed by a novel NaPF6/BMITFSI ionic liquid electrolyte[J]. Nano Energy, 2018, 51: 524-532.
|
44 |
ZHAO J, YANG X, YAO Y, et al. Moving to aqueous binder: A valid approach to achieving high-rate capability and long-term durability for sodium-ion battery[J]. Advanced Science, 2018, 5(4): doi:10.1002/advs.201700768.
|
45 |
LI L, ZHANG N, SU Y Q, et al. Fluorine dissolution-induced capacity degradation for fluorophosphate-based cathode materials[J]. ACS Applied Materials & Interfaces, 2021, 13(20): 23787-23793.
|
46 |
HWANG J, MATSUMOTO K, HAGIWARA R. Electrolytes toward high-voltage Na3V2(PO4)2F3 positive electrode durable against temperature variation[J]. Advanced Energy Materials, 2020, 10(34): doi:10.1002/aenm.202001880.
|
47 |
ZHOU X, XIE Y, DENG Y F, et al. The enhanced rate performance of LiFe0.5Mn0.5PO4/C cathode material via synergistic strategies of surfactant-assisted solid state method and carbon coating[J]. Journal of Materials Chemistry A, 2015, 3(3): 996-1004.
|
48 |
YANG S L, HU M J, XI L J, et al. Solvothermal synthesis of monodisperse LiFePO4 micro hollow spheres as high performance cathode material for lithium ion batteries[J]. ACS Applied Materials & Interfaces, 2013, 5(18): 8961-8967.
|
49 |
YANG L, LIAO H X, TIAN Y, et al. Rod-like Sb2MoO6: Structure evolution and sodium storage for sodium-ion batteries[J]. Small Methods, 2019, 3(5): doi:10.1002/smtd.201800533.
|