储能科学与技术 ›› 2022, Vol. 11 ›› Issue (6): 1874-1882.doi: 10.19799/j.cnki.2095-4239.2022.0061

• 化工与储能专刊 • 上一篇    下一篇

Sn掺杂NaNi1/3Fe1/3Mn1/3-x Sn x O2 正极材料制备及其电化学性能

张浩然1(), 车海英2(), 郭凯强1, 申展3, 张云龙2, 陈航达2, 周煌2, 廖建平2, 刘海梅1, 马紫峰2,3   

  1. 1.上海电力大学环境与化学工程学院,上海 200090
    2.浙江钠创新能源有限公司,浙江 绍兴 312000
    3.上海交通大学化学工程系,上海 200240
  • 收稿日期:2022-02-08 修回日期:2022-02-27 出版日期:2022-06-05 发布日期:2022-06-13
  • 通讯作者: 车海英 E-mail:500.haoran@163.com;chysyx@sjtu.edu.cn
  • 作者简介:张浩然(1997—),男,硕士研究生,研究方向为钠离子电池技术,E-mail:500.haoran@163.com
  • 基金资助:
    国家自然科学基金项目(22005190);上海市科技启明星计划(20QB1405700)

Preparation of Sn-doped NaNi1/3Fe1/3Mn1/3-x Sn x O2 cathode materials and their electrochemical performance

ZHANG Haoran1(), CHE Haiying2(), GUO Kaiqiang1, SHEN Zhan3, ZHANG Yunlong2, CHEN Hangda2, ZHOU Huang2, LIAO Jianping2, LIU Haimei1, MA Zifeng2,3   

  1. 1.College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
    2.Zhejiang NaTRIUM Energy Co. Ltd. , Shaoxing 312000, Zhejiang, China
    3.Department of Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
  • Received:2022-02-08 Revised:2022-02-27 Online:2022-06-05 Published:2022-06-13
  • Contact: CHE Haiying E-mail:500.haoran@163.com;chysyx@sjtu.edu.cn

摘要:

O3型NaNi1/3Fe1/3Mn1/3O2材料因兼具高容量特性和稳定的结构,已被认为是率先进入产业化的层状结构过渡金属氧化物正极材料之一。然而,该过渡金属氧化物正极材料的循环稳定性及倍率性能有待进一步提高。本工作制备一种Sn掺杂NaNi1/3Fe1/3Mn1/3-x Sn x O2正极材料。结构表征发现,适量的Sn掺杂不改变NaNi1/3Fe1/3Mn1/3O2材料的R3m空间群O3型层状结构,同时Sn取代部分Mn可使层间距增大,增强Na+扩散能力,减少嵌/脱钠过程对结构的破坏,但会使TM—O键长收缩,从而增强过渡金属层的结构稳定性。TEM测试表明,Sn掺杂的NaNi1/3Fe1/3Mn1/3O2材料呈现出更完善的层状晶格结构,这在一定程度上抑制了晶格畸变。同时,Sn掺杂可提高正极材料的氧化还原反应可逆性,并可能减少有利相变P相的损失。电化学性能测试表明,当Sn掺杂计量比为0.02时的NaNi1/3Fe1/3Mn1/3-0.02Sn0.02O2材料电化学性能最佳。在2~4 V充放电区间下,0.2 C倍率电流首次放电比容量为139.1 mAh/g。在8 C倍率下放电比容量达110.5 mAh/g、200圈循环后的容量保持率为80.1%。本研究揭示了Sn的作用机理,对设计高倍率性能和高循环稳定性的正极材料具有一定普遍意义。

关键词: 钠离子电池, NaNi1/3Fe1/3Mn1/3O2正极材料, Sn掺杂, 层状结构过渡金属氧化物

Abstract:

The O3-type NaNi1/3Fe1/3Mn1/3O2 materials have been considered as the most promising cathode materials for high-energy density layered sodium-ion batteries owing to their high capacity and structural stability. However, its poor cycling stability and rate performance as a layered oxide material limit its practical application. In this study, NaNi1/3Fe1/3Mn1/3-x Sn x O2 cathode materials with different Sn-doping ratios were synthesized using a simple solid-phase method to improve the electrochemical performance. The analysis results revealed that optimized Sn doping retained the O3 layered structure with R3m space group. In addition, the NaNi1/3Fe1/3Mn1/3-0.02Sn0.02O2 material exhibited the best comprehensive electrochemical performance. Mn, which was partially substituted by Sn, could increase the interlayer spacing, enhance the Na+ diffusion ability, and reduce lattice-structure damage caused by the Na+ insertion/extraction process. Moreover, Sn doping could shrink the length of the TM—O bond, thus enhancing the structural stability of the transition-metal layer. The transmission electron microscopy images showed that Sn-doped cathodes possess more perfectly layered lattice structure, which inhibited lattice distortion. Sn-replaced Mn could improve the redox reversibility of the cathode materials and possibly reduce the loss of favorable phase transition P phase. The NaNi1/3Fe1/3Mn1/3-0.02Sn0.02O2 material exhibited the best comprehensive electrochemical performance in which 139.1 mAh/g of initial specific discharge capacity at 0.2 C was achieved. Excellent rate performance was also achieved, as evidenced by the 110.5 mAh/g of specific discharge capacity at 8 C rate and 80.1% capacity retention after 200 cycles in the voltage range of 2-4 V. This work demonstrated the Sn mechanism, which is very important in designing cathode materials with higher rate performance and cyclability.

Key words: sodium ion battery, NaNi1/3Fe1/3Mn1/3O2 materials, Sn-doped, layered transition metal oxides

中图分类号: