1 |
RAO F Y, WANG Z Q, XU B, et al. First-principles study of lithium and sodium atoms intercalation in fluorinated graphite[J]. Engineering, 2015, 1(2): 243-246.
|
2 |
HAN M J, YOON D K. Advances in soft materials for sustainable electronics[J]. Engineering, 2021, 7(5): 564-580.
|
3 |
王凡凡, 刘晓斌, 陈龙, 等. 室温钠离子电池关键材料研究进展[J]. 电化学, 2019, 25(1): 55-76.
|
|
WANG F F, LIU X B, CHEN L, et al. Recent progress in key materials for room-temperature sodium-ion batteries[J]. Journal of Electrochemistry, 2019, 25(1): 55-76.
|
4 |
CHE H Y, YANG X R, WANG H, et al. Long cycle life of sodium-ion pouch cell achieved by using multiple electrolyte additives[J]. Journal of Power Sources, 2018, 407: 173-179.
|
5 |
CHE H Y, YANG X R, YU Y, et al. Engineering optimization approach of nonaqueous electrolyte for sodium ion battery with long cycle life and safety[J]. Green Energy & Environment, 2021, 6(2): 212-219.
|
6 |
ZHANG Q Q, ZHOU Q, LU Y X, et al. Modification of NASICON electrolyte and its application in real Na-ion cells[J]. Engineering, 2022, 8: 170-180.
|
7 |
KIM D, LEE E, SLATER M, et al. Layered Na[Ni1/3Fe1/3Mn1/3]O2 cathodes for Na-ion battery application[J]. Electrochemistry Communications, 2012, 18: 66-69.
|
8 |
WANG H, LIAO X Z, YANG Y, et al. Large-scale synthesis of NaNi1/3Fe1/3Mn1/3O2 as high performance cathode materials for sodium ion batteries[J]. Journal of the Electrochemical Society, 2016, 163(3): A565-A570.
|
9 |
王红, 廖小珍, 颉莹莹, 等. 新型移动式钠离子电池储能系统设计与研究[J]. 储能科学与技术, 2016, 5(1): 65-68.
|
|
WANG H, LIAO X Z, XIE Y Y, et al. Design and investigation on portable energy storage device based on sodium-ion batteries[J]. Energy Storage Science and Technology, 2016, 5(1): 65-68.
|
10 |
SUN Y, WANG H, MENG D C, et al. Degradation mechanism of O3-type NaNi1/3Fe1/3Mn1/3O2 cathode materials during ambient storage and their in situ regeneration[J]. ACS Applied Energy Materials, 2021, 4(3): 2061-2067.
|
11 |
戚兴国, 王伟刚, 胡勇胜, 等. 钠离子电池层状氧化物正极材料的表面修饰研究[J]. 储能科学与技术, 2020, 9(5): 1396-1401.
|
|
QI X G, WANG W G, HU Y S, et al. Surface modification research of layered oxide materials for sodium-ion batteries[J]. Energy Storage Science and Technology, 2020, 9(5): 1396-1401.
|
12 |
GUO S H, YU H J, LIU P, et al. High-performance symmetric sodium-ion batteries using a new, bipolar O3-type material, Na0.8Ni0.4Ti0.6O2[J]. Energy & Environmental Science, 2015, 8(4): 1237-1244.
|
13 |
HWANG J Y, MYUNG S T, SUN Y K. Sodium-ion batteries: Present and future[J]. Chemical Society Reviews, 2017, 46(12): 3529-3614.
|
14 |
YOU Y, MANTHIRAM A. Progress in high-voltage cathode materials for rechargeable sodium-ion batteries[J]. Advanced Energy Materials, 2018, 8(2): doi:10.1002/aenm.201701785.
|
15 |
SUN L Q, XIE Y Y, LIAO X Z, et al. Insight into Ca-substitution effects on O3-type NaNi1/3Fe1/3Mn1/3O2 cathode materials for sodium-ion batteries application[J]. Small, 2018, 14(21): doi:10.1002/smll.201704523.
|
16 |
YU T Y, HWANG J Y, BAE I T, et al. High-performance Ti-doped O3-type Na[Tix(Ni0.6Co0.2Mn0.2)1- x]O2 cathodes for practical sodium-ion batteries[J]. Journal of Power Sources, 2019, 422: 1-8.
|
17 |
MAO Q J, ZHANG C, YANG W Y, et al. Mitigating the voltage fading and lattice cell variations of O3-NaNi0.2Fe0.35Mn0.45O2 for high performance Na-ion battery cathode by Zn doping[J]. Journal of Alloys and Compounds, 2019, 794: 509-517.
|
18 |
ZHANG C, GAO R, ZHENG L R, et al. New insights into the roles of Mg in improving the rate capability and cycling stability of O3-NaMn0.48Ni0.2Fe0.3Mg0.02O2 for sodium-ion batteries[J]. ACS Applied Materials & Interfaces, 2018, 10(13): 10819-10827.
|
19 |
WANG P F, YAO H R, LIU X Y, et al. Ti-substituted NaNi0.5 Mn0.5- x tix O2 cathodes with reversible O3-P3 phase transition for high-performance sodium-ion batteries[J]. Advanced Materials, 2017, 29(19): doi:10.1002/adma.201700210.
|
20 |
DELMAS C, BORTHOMIEU Y, FAURE C, et al. Nickel hydroxide and derived phases obtained by chimie douce from NaNiO2[J]. Solid State Ionics, 1989, 32/33: 104-111.
|
21 |
颉莹莹. 基于同步辐射X射线技术原位研究NaNi1/3Fe1/3Mn1/3O2正极材料合成过程、结构与热稳定性[D]. 上海: 上海交通大学, 2019.
|
|
XIE Y Y. Research of synthesis process, structure and thermal stability for NaNi1/3Fe1/3Mn1/3O2 cathode material based on in situ synchrotron X-ray techniques[D]. Shanghai: Shanghai Jiao Tong University, 2019.
|
22 |
SUN H L, WANG J, LIU Q, et al. Ag-Sn dual-modified LiNi0.8Co0.1Mn0.1O2 as cathode for lithium storage[J]. Journal of Alloys and Compounds, 2021, 850: doi: 10.1016/j.jallcom.2020.156763.
|
23 |
YANG X H, WANG Y Z, WANG J L, et al. Superior cyclability of Ce-doped P2-Na0.67Co0.20Mn0.80O2 cathode for sodium storage[J]. Journal of Physics and Chemistry of Solids, 2021, 148: doi: 10.1016/j.jpcs.2020.109750.
|
24 |
KONG W J, GAO R, LI Q Y, et al. Simultaneously tuning cationic and anionic redox in a P2-Na0.67Mn0.75Ni0.25O2 cathode material through synergic Cu/Mg co-doping[J]. Journal of Materials Chemistry A, 2019, 7(15): 9099-9109.
|
25 |
DANG R B, LI Q, CHEN M M, et al. CuO-coated and Cu2+-doped Co-modified P2-type Na2/3[Ni1/3 Mn2/3]O2 for sodium-ion batteries[J]. Physical Chemistry Chemical Physics: PCCP, 2018, 21(1): 314-321.
|
26 |
JEONG M, LEE H, YOON J, et al. O3-type NaNi1/3Fe1/3Mn1/3O2 layered cathode for Na-ion batteries: Structural evolution and redox mechanism upon Na (de) intercalation[J]. Journal of Power Sources, 2019, 439: doi:10.1016/j.jpowsour.2019.227064.
|
27 |
WU F, LI Q, CHEN L, et al. Use of Ce to reinforce the interface of Ni-rich LiNi0.8Co0.1Mn0.1O2 cathode materials for lithium-ion batteries under high operating voltage[J]. ChemSusChem, 2019, 12(4): 935-943.
|
28 |
XIE Y, GAO H, Harder R, et al. Revealing the structural evolution and phase transformation of O3-type NaNi1/3Fe1/3Mn1/3O2 cathode material on sintering and cycling processes[J]. ACS Applied Energy Materials, 2020, 3(7): 6107-6114.
|
29 |
CAI Y, CHU G W, LUO Y, et al. An evaluation of metronidazole degradation in a plasma-assisted rotating disk reactor coupled with TiO2 in aqueous solution[J]. Engineering, 2021, 7(11): 1603-1610.
|
30 |
WANG L, ZHAO J S, HE X M, et al. Electrochemical impedance spectroscopy (EIS) study of LiNi1/3Co1/3Mn1/3O2 for Li-ion batteries[J]. International Journal of Electrochemical Science, 2012, 7(1): 345-353.
|
31 |
MA X L, WANG C W, CHENG J G, et al. Effects of Sn doping on the structural and electrochemical properties of LiNi0.8Co0.2O2 cathode materials[J]. Solid State Ionics, 2007, 178(1/2): 125-129.
|