储能科学与技术 ›› 2022, Vol. 11 ›› Issue (6): 1865-1873.doi: 10.19799/j.cnki.2095-4239.2022.0174

• 化工与储能专刊 • 上一篇    下一篇

致密储能:基于石墨烯的方法学和应用实例

韩俊伟1,2,6(), 肖菁1,3,6, 陶莹1,3, 孔德斌4,6, 吕伟2, 杨全红1,3,5,6()   

  1. 1.天津大学化工学院,天津 300072
    2.清华大学深圳国际研究生院,广东 深圳 518055
    3.物质绿色创造与制造海河实验室,天津 300192
    4.中国石油大学(华东)新能源学院,山东 青岛 266580
    5.天津大学-新加坡国立大学福州联合学院,福建 福州 350207
    6.天目湖先进储能技术研究院,江苏 溧阳 213300
  • 收稿日期:2022-03-30 修回日期:2022-04-27 出版日期:2022-06-05 发布日期:2022-06-13
  • 通讯作者: 杨全红 E-mail:hardway@tju.edu.cn;qhyangcn@tju.edu.cn
  • 作者简介:韩俊伟(1990—),男,博士,主要研究方向为碳基储能材料,E-mail:hardway@tju.edu.cn
  • 基金资助:
    国家自然科学基金项目(51872195);国家重点研发计划项目(2021YFF0500600)

Compact energy storage: Methodology with graphenes and the applications

HAN Junwei1,2,6(), XIAO Jing1,3,6, TAO Ying1,3, KONG Debin4,6, LV Wei2, YANG Quanhong1,3,5,6()   

  1. 1.School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
    2.Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China
    3.Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
    4.College of New Energy, China University of Petroleum (East China), Qingdao 266580, Shandong, China
    5.Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, Fujian, China
    6.Tianmu Lake Institute of Advanced Energy Storage Technologies, Liyang 213300, Jiangsu, China
  • Received:2022-03-30 Revised:2022-04-27 Online:2022-06-05 Published:2022-06-13
  • Contact: YANG Quanhong E-mail:hardway@tju.edu.cn;qhyangcn@tju.edu.cn

摘要:

“致密储能”,即在尽可能小的体积内存储尽可能多的能量,是解决储能器件“空间焦虑”的必由之路。以石墨烯为基元组装获得的碳材料用作电极关键材料,可促进电化学反应并在优化电极和电池体积性能方面扮演着重要的角色。本文首先总结了二次电池致密储能的重要性及其关键挑战,立足石墨烯致密自组装及其在高体积比容量超级电容器电极中的应用,提出了基于石墨烯的致密储能方法论;基于此着重梳理了高体积性能二次电池,特别是致密型锂离子电池电极中“收放自如”碳网络构建的研究进展,最后展望了实用工况下致密储能体系循环稳定性、快充、热安全等方面问题的应对思路。

关键词: 致密储能, 锂离子电池, 体积能量密度, 碳材料, 石墨烯

Abstract:

The only way to address the emerging "space anxiety" in rapidly developing energy storage devices is through "compact energy storage," or storing as much energy as possible in the smallest possible space. Carbon materials assembled from graphene basic units can be used as key components in electrodes to promote electrochemical reactions and play an important role in optimizing electrode and battery volumetric performance. This review summarizes the significance of compact energy storage in rechargeable batteries as well as the major challenges. We propose a compact energy storage methodology based on the dense self-assembly process of graphenes, as well as its application in high-volumetric-capacitor electrodes, and then extend it to build compact high-energy rechargeable batteries, particularly lithium-ion batteries. To achieve compact energy storage from materials to electrodes and devices, the strategy of densifying the electrodes using customized carbon structures is highlighted. For future development, special concerns about cycling stability, fast charging, and thermal safety under practical working conditions in compact batteries are discussed.

Key words: compact energy storage, lithium-ion batteries, volumetric energy density, carbon, graphene

中图分类号: