1 |
CHOI J W, AURBACH D. Promise and reality of post-lithium-ion batteries with high energy densities[J]. Nature Reviews Materials, 2016, 1: 16013.
|
2 |
李文俊, 徐航宇, 杨琪, 等. 高能量密度锂电池开发策略[J]. 储能科学与技术, 2020, 9(2): 448-478.
|
|
LI W J, XU H Y, YANG Q, et al. Development of strategies for high-energy-density lithium batteries[J]. Energy Storage Science and Technology, 2020, 9(2): 448-478.
|
3 |
ZHANG C, LV W, TAO Y, et al. Towards superior volumetric performance: Design and preparation of novel carbon materials for energy storage[J]. Energy & Environmental Science, 2015, 8(5): 1390-1403.
|
4 |
HAN J W, LI H, YANG Q H. Compact energy storage enabled by graphenes: Challenges, strategies and progress[J]. Materials Today, 2021, 51: 552-565.
|
5 |
LUO F, LIU B N, ZHENG J Y, et al. Review—nano-silicon/carbon composite anode materials towards practical application for next generation Li-ion batteries[J]. Journal of the Electrochemical Society, 2015, 162(14): A2509-A2528.
|
6 |
张辰, 刘东海, 吕伟, 等. 高体积能量密度锂硫电池的构建: 材料和电极[J]. 储能科学与技术, 2017, 6(3): 550-556.
|
|
ZHANG C, LIU D H, LV W, et al. Construction of Li-S battery with high volumetric performance: Materials and electrode[J]. Energy Storage Science and Technology, 2017, 6(3): 550-556.
|
7 |
陶莹, 李欢, 杨全红. 致密储能—石墨烯用于超级电容器的机遇和展望[J]. 储能科学与技术, 2016, 5(6): 781-787.
|
|
TAO Y, LI H, YANG Q H. Compact energy storage: Opportunities and challenges of graphene for supercapacitors[J]. Energy Storage Science and Technology, 2016, 5(6): 781-787.
|
8 |
NITTA N, WU F X, LEE J T, et al. Li-ion battery materials: Present and future[J]. Materials Today, 2015, 18(5): 252-264.
|
9 |
SUN Y M, LIU N, CUI Y. Promises and challenges of nanomaterials for lithium-based rechargeable batteries[J]. Nature Energy, 2016, 1: 16071.
|
10 |
WANG J Y, LIAO L, LI Y Z, et al. Shell-protective secondary silicon nanostructures as pressure-resistant high-volumetric-capacity anodes for lithium-ion batteries[J]. Nano Letters, 2018, 18(11): 7060-7065.
|
11 |
HAN J W, KONG D B, LV W, et al. Caging tin oxide in three-dimensional graphene networks for superior volumetric lithium storage[J]. Nature Communications, 2018, 9: 402.
|
12 |
XUE W J, SHI Z, SUO L M, et al. Intercalation-conversion hybrid cathodes enabling Li-S full-cell architectures with jointly superior gravimetric and volumetric energy densities[J]. Nature Energy, 2019, 4(5): 374-382.
|
13 |
WANG J Y, CUI Y. Electrolytes for microsized silicon[J]. Nature Energy, 2020, 5(5): 361-362.
|
14 |
PARK S H, KING P J, TIAN R Y, et al. High areal capacity battery electrodes enabled by segregated nanotube networks[J]. Nature Energy, 2019, 4(7): 560-567.
|
15 |
HAN J W, LI H, KONG D B, et al. Realizing high volumetric lithium storage by compact and mechanically stable anode designs[J]. ACS Energy Letters, 2020, 5(6): 1986-1995.
|
16 |
LV W, LI Z J, DENG Y Q, et al. Graphene-based materials for electrochemical energy storage devices: Opportunities and challenges[J]. Energy Storage Materials, 2016, 2: 107-138.
|
17 |
TAO Y, XIE X Y, LV W, et al. Towards ultrahigh volumetric capacitance: Graphene derived highly dense but porous carbons for supercapacitors[J]. Scientific Reports, 2013, 3: 2975.
|
18 |
QI C S, LUO C, TAO Y, et al. Capillary shrinkage of graphene oxide hydrogels[J]. Science China Materials, 2020, 63(10): 1870-1877.
|
19 |
XU Y, TAO Y, ZHENG X Y, et al. A metal-free supercapacitor electrode material with a record high volumetric capacitance over 800 F·cm-3[J]. Advanced Materials, 2015, 27(48): 8082-8087.
|
20 |
LI H, TAO Y, ZHENG X Y, et al. Ultra-thick graphene bulk supercapacitor electrodes for compact energy storage[J]. Energy & Environmental Science, 2016, 9(10): 3135-3142.
|
21 |
HONG L. A high capacity nano-Si composite anode material for lithium rechargeable batteries[J]. Electrochemical and Solid-State Letters, 1999, 2(11): 547.
|
22 |
周军华, 罗飞, 褚赓, 等. 锂离子电池纳米硅碳负极材料研究进展[J]. 储能科学与技术, 2020, 9(2): 569-582.
|
|
ZHOU J H, LUO F, CHU G, et al. Research progress on nano silicon-carbon anode materials for lithium ion battery[J]. Energy Storage Science and Technology, 2020, 9(2): 569-582.
|
23 |
XU Q, LI J Y, SUN J K, et al. Watermelon-inspired Si/C microspheres with hierarchical buffer structures for densely compacted lithium-ion battery anodes[J]. Advanced Energy Materials, 2017, 7(3): doi: 10.1002/aenm.201601481.
|
24 |
LI Y Z, YAN K, LEE H W, et al. Growth of conformal graphene cages on micrometre-sized silicon particles as stable battery anodes[J]. Nature Energy, 2016, 1: 15029.
|
25 |
周琳, 杨佯, 胡勇胜. 合金电极失效机制:体积膨胀?电解液分解?[J]. 储能科学与技术, 2021, 10(3): 813-820.
|
|
ZHOU L, YANG Y, HU Y S. Failure mechanism of alloy electrodes: Volume change? decomposition of electrolyte?[J]. Energy Storage Science and Technology, 2021, 10(3): 813-820.
|
26 |
CHEN F Q, HAN J W, KONG D B, et al. 1000 Wh·L-1 lithium-ion batteries enabled by crosslink-shrunk tough carbon encapsulated silicon microparticle anodes[J]. National Science Review, 2021, 8(9): doi: 10.1093/nsr/nwab012.
|
27 |
HAN J W, ZHANG C, KONG D B, et al. Flowable sulfur template induced fully interconnected pore structures in graphene artefacts towards high volumetric potassium storage[J]. Nano Energy, 2020, 72: doi: 10.1016/j.nanoen.2020.104729.
|
28 |
MA H Y, GENG H Y, YAO B W, et al. Highly ordered graphene solid: An efficient platform for capacitive sodium-ion storage with ultrahigh volumetric capacity and superior rate capability[J]. ACS Nano, 2019, 13(8): 9161-9170.
|
29 |
LIU Y T, LIU S, LI G R, et al. Strategy of enhancing the volumetric energy density for lithium-sulfur batteries[J]. Advanced Materials, 2021, 33(8): doi: 10.1002/adma.202003955.
|
30 |
ZHANG C, LIU D H, LV W, et al. A high-density graphene-sulfur assembly: A promising cathode for compact Li-S batteries[J]. Nanoscale, 2015, 7(13): 5592-5597.
|
31 |
LI H, TAO Y, ZHANG C, et al. Dense graphene monolith for high volumetric energy density Li-S batteries[J]. Advanced Energy Materials, 2018, 8(18): doi: 10.1002/aenm.201703438.
|
32 |
PAN H L, CHEN J Z, CAO R G, et al. Non-encapsulation approach for high-performance Li-S batteries through controlled nucleation and growth[J]. Nature Energy, 2017, 2(10): 813-820.
|
33 |
LIAO Y Q, YUAN L X, XIANG J W, et al. Realizing both high gravimetric and volumetric capacities in Li/3D carbon composite anode[J]. Nano Energy, 2020, 69: doi: 10.1016/j.nanoen.2020.104471.
|
34 |
CHEN Y M, WANG Z Q, LI X Y, et al. Li metal deposition and stripping in a solid-state battery via Coble creep[J]. Nature, 2020, 578(7794): 251-255.
|
35 |
BOLES S T, TAHMASEBI M H. Are foils the future of anodes?[J]. Joule, 2020, 4(7): 1342-1346.
|
36 |
HELIGMAN B T, KREDER K J III, MANTHIRAM A. Zn-Sn interdigitated eutectic alloy anodes with high volumetric capacity for lithium-ion batteries[J]. Joule, 2019, 3(4): 1051-1063.
|
37 |
ZHOU T H, LYU W, LI J, et al. Twinborn TiO2-TiN heterostructures enabling smooth trapping-diffusion-conversion of polysulfides towards ultralong life lithium-sulfur batteries[J]. Energy & Environmental Science, 2017, 10 (7): 1694-1703.
|
38 |
GRIFFITH K J, WIADEREK K M, CIBIN G, et al. Niobium tungsten oxides for high-rate lithium-ion energy storage[J]. Nature, 2018, 559(7715): 556-563.
|
39 |
NIU C J, LEE H, CHEN S R, et al. High-energy lithium metal pouch cells with limited anode swelling and long stable cycles[J]. Nature Energy, 2019, 4(7): 551-559.
|
40 |
ZHU Z, YU D W, SHI Z, et al. Gradient-morph LiCoO2 single crystals with stabilized energy density above 3400 Wh·L-1[J]. Energy & Environmental Science, 2020, 13(6): 1865-1878.
|
41 |
ZHANG J N, LI Q H, OUYANG C Y, et al. Trace doping of multiple elements enables stable battery cycling of LiCoO2 at 4.6 V[J]. Nature Energy, 2019, 4(7): 594-603.
|