1 |
左培文, 朱培培, 邵丽青. 新能源汽车动力电池产业发展特点与趋势分析[J]. 汽车文摘, 2022(1): 1-7.
|
|
ZUO P W, ZHU P P, SHAO L Q. The development characteristics and trend analysis of power battery industry for new energy vehicles[J]. Automotive Digest, 2022(1): 1-7.
|
2 |
李方方, 张晓龙, 吴怡, 等. 我国动力锂电池行业现状和发展趋势[J]. 交通节能与环保, 2016, 12(3): 14-16.
|
|
LI F F, ZHANG X L, WU Y, et al. Current situation and development trend of power lithium battery industry[J]. Energy Conservation & Environmental Protection in Transportation, 2016, 12(3): 14-16.
|
3 |
张颖. 新能源车渗透率继续提高[J]. 汽车与配件, 2021(14): 4.ZHANG Y. New energy vehicle penetration continues to increase[J]. Automobile & Parts, 2021(14): 4.
|
4 |
FENG X N, PAN Y, HE X M, et al. Detecting the internal short circuit in large-format lithium-ion battery using model-based fault-diagnosis algorithm[J]. Journal of Energy Storage, 2018, 18: 26-39.
|
5 |
熊瑞. 动力电池管理系统核心算法[M]. 北京: 机械工业出版社, 2018: 100-104.
|
|
XIONG R. Core algorithm of battery management system for EVs[M]. Beijing: China Machine Press, 2018: 100-104.
|
6 |
GE M F, LIU Y B, JIANG X X, et al. A review on state of health estimations and remaining useful life prognostics of lithium-ion batteries[J]. Measurement, 2021, 174: doi:10.1016/j.measurement.2021.109057.
|
7 |
耿萌萌, 范茂松, 杨凯, 等. 基于EIS和神经网络的退役电池SOH快速估计[J]. 储能科学与技术, 2022, 11(2): 673-678.
|
|
GENG M M, FAN M S, YANG K, et al. Fast estimation method for state-of-health of retired batteries based on electrochemical impedance spectroscopy and neural network[J]. Energy Storage Science and Technology, 2022, 11(2): 673-678.
|
8 |
韩云飞, 谢佳, 蔡涛, 等. 结合高斯过程回归与特征选择的锂离子电池容量估计方法[J]. 储能科学与技术, 2021, 10(4): 1432-1438.
|
|
HAN Y F, XIE J, CAI T, et al. Capacity estimation of lithium-ion batteries based on Gaussian process regression and feature selection[J]. Energy Storage Science and Technology, 2021, 10(4): 1432-1438.
|
9 |
任璞, 王顺利, 何明芳, 等. 基于内阻增加和容量衰减双重标定的锂电池健康状态评估[J]. 储能科学与技术, 2021, 10(2): 738-743.
|
|
REN P, WANG S L, HE M F, et al. State of health estimation of Li-ion battery based on dual calibration of internal resistance increasing and capacity fading[J]. Energy Storage Science and Technology, 2021, 10(2): 738-743.
|
10 |
董明, 范文杰, 刘王泽宇, 等. 基于特征频率阻抗的锂离子电池健康状态评估[J/OL]. 中国电机工程学报: 1-11. [2022-04-01]. doi:10.13334/j.0258-8013.pcsee.212036.
|
|
DONG M, FAN W J, LIU Wangzeyu, et al. Health assessment of lithium-ion batteries based on characteristic frequency impedance[J/OL]. Proceedings of the CSEE: 1-11. [2022-04-01]. doi:10.13334/j.0258-8013.pcsee.212036.
|
11 |
WANG S L, FERNANDEZ C, YU C M, et al. A novel charged state prediction method of the lithium ion battery packs based on the composite equivalent modeling and improved splice Kalman filtering algorithm[J]. Journal of Power Sources, 2020, 471: doi:10.1016/j.jpowsour.2020.228450.
|
12 |
王凡, 史永胜, 刘博亲, 等. 基于注意力改进BiGRU的锂离子电池健康状态估计[J]. 储能科学与技术, 2021, 10(6): 2326-2333.
|
|
WANG F, SHI Y S, LIU B Q, et al. Health state estimation of lithium-ion batteries based on attention augmented BiGRU[J]. Energy Storage Science and Technology, 2021, 10(6): 2326-2333.
|
13 |
张孝远, 张金浩, 蒋亚俊. 基于改进TCN模型的动力电池健康状态评估[J]. 储能科学与技术, 2022, 11(5): 1617-1626.
|
|
ZHANG X Y, ZHANG J H, JIANG Y J. Power battery health evaluation based on improved TCN model[J]. Energy Storage Science and Technology, 2022, 11(5): 1617-1626.
|
14 |
KE G L, MENG Q, FINLEY T, et al. Lightgbm: A highly efficient gradient boosting decision tree[J]. Advances in Neural Information Processing systems, 2017, 30.
|
15 |
MENG Q, KE G L, WANG T F, et al. A communication-efficient parallel algorithm for decision tree[C]//30th Conference on Neural Information Processing Systems (NIPS 2016), 2016.
|
16 |
ZHANG Z Q, LI L, LI X, et al. State-of-health estimation for the lithium-ion battery based on gradient boosting decision tree with autonomous selection of excellent features[J]. International Journal of Energy Research, 2022, 46(2): 1756-1765.
|
17 |
LIU D T, PANG J Y, ZHOU J B, et al. Data-driven prognostics for lithium-ion battery based on Gaussian Process Regression[C]// Proceedings of the IEEE 2012 Prognostics and System Health Management Conference, 2012.
|
18 |
PENNA J A M, NASCIMENTO C L, RODRIGUES L R. Health monitoring and remaining useful life estimation of lithium-ion aeronautical batteries[C]//2012 IEEE Aerospace Conference, 2012.
|
19 |
梅雪峰, 赵礼峰. 基于LightGBM的改进表面肌电信号手势识别研究[J]. 计算机与数字工程, 2022, 50(1): 95-99.
|
|
MEI X F, ZHAO L F. Research on improved gesture recognition of surface EMG based on LightGBM[J]. Computer & Digital Engineering, 2022, 50(1): 95-99.
|
20 |
刘兴涛, 刘晓剑, 武骥, 等. 基于曲线压缩与XGBoost算法的锂离子电池SOH估计[J/OL]. 吉林大学学报(工学版): 1-8. [2022-04-13]. doi:10.13229/j.cnki.jdxbgxb20210020.
|
|
LIU X T, LIU X J, WU J, et al. Curve compression and XGBoost based state of health estimation method for lithium-ion battery[J/OL]. Journal of Jilin University (Engineering and Technology Edition): 1-8. [2022-04-13]. doi: 10.13229/j.cnki.jdxbgxb20210020.
|
21 |
刘运鑫, 姚良忠, 周金辉, 等. 基于LSTM的锂电池储能装置SOC与SOH联合预测[J]. 全球能源互联网, 2022, 5(1): 37-45.
|
|
LIU Y X, YAO L Z, ZHOU J H, et al. Joint prediction of state of charge and state of health based on LSTM for lithium-ion batteries[J]. Journal of Global Energy Interconnection, 2022, 5(1): 37-45.
|