储能科学与技术 ›› 2022, Vol. 11 ›› Issue (6): 1834-1846.doi: 10.19799/j.cnki.2095-4239.2022.0183
辛耀达1(), 李娜1, 杨乐1, 宋维力1(), 孙磊2, 陈浩森1(), 方岱宁1
收稿日期:
2022-03-31
修回日期:
2022-04-24
出版日期:
2022-06-05
发布日期:
2022-06-13
通讯作者:
宋维力,陈浩森
E-mail:xinyaoda7799@163.com;weilis@bit.edu.cn;chenhs@bit.edu.cn
作者简介:
辛耀达(1997—),男,博士研究生,从事锂离子电池研究,E-mail:xinyaoda7799@163.com;
基金资助:
XIN Yaoda1(), LI Na1, YANG Le1, SONG Weili1(), SUN Lei2, CHEN Haosen1(), FANG Daining1
Received:
2022-03-31
Revised:
2022-04-24
Online:
2022-06-05
Published:
2022-06-13
Contact:
SONG Weili, CHEN Haosen
E-mail:xinyaoda7799@163.com;weilis@bit.edu.cn;chenhs@bit.edu.cn
摘要:
电化学储能作为实现低碳电力系统的关键技术,近年来项目建设快速增长,其安全问题也日益突出。近10年间,全球至少发生30余起储能电站起火爆炸事故,提升运行效率、安全性、稳定性已刻不容缓。高安全高稳定的锂离子储能系统是电力行业发展的必然选择。现有基于模组层级的传感技术已不能完全满足有效预警的迫切需求,亟待发展新型智能传感技术。单体层级传感是破解储能锂电池高安全高稳定难题的有效途径。单体层级植入传感技术,可获得全寿命周期单体内部温度场、应变场、气压、气体等多传感信息,有望实现早预警、早隔离、早处置。本文将系统综述这一先进技术面临的诸多难题、挑战与最新进展,具体包括以下3个方面:植入传感器长寿命需求与单体内部电化学腐蚀条件的矛盾(测得准)、传感器植入需求与电池全寿命周期稳定服役的矛盾(埋得进)、传感信号高效传输需求与电池单体外壳电磁屏蔽的矛盾(传得出)。进一步,展望植入传感技术在锂离子电池早期热失控预警、全生命周期电化学特性方面的重要应用。
中图分类号:
辛耀达, 李娜, 杨乐, 宋维力, 孙磊, 陈浩森, 方岱宁. 锂离子电池植入传感技术[J]. 储能科学与技术, 2022, 11(6): 1834-1846.
XIN Yaoda, LI Na, YANG Le, SONG Weili, SUN Lei, CHEN Haosen, FANG Daining. Integrated sensing technology for lithium ion battery[J]. Energy Storage Science and Technology, 2022, 11(6): 1834-1846.
1 | TARASCON J M, ARMAND M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861): 359-367. |
2 | CHU S, MAJUMDAR A. Opportunities and challenges for a sustainable energy future[J]. Nature, 2012, 488(7411): 294-303. |
3 | HASSOUN J, PANERO S, REALE P, et al. A new, safe, high-rate and high-energy polymer lithium-ion battery[J]. Advanced Materials, 2009, 21(47): 4807-4810. |
4 | GOODENOUGH J B, KIM Y. Challenges for rechargeable Li batteries[J]. Chemistry of Materials, 2010, 22(3): 587-603. |
5 | CHEN L Y, FU J F, LU Q, et al. Cross-linked polymeric ionic liquids ion gel electrolytes by in situ radical polymerization[J]. Chemical Engineering Journal, 2019, 378:doi:10.1016/j.cej.2019.122245. |
6 | LIU B H, JIA Y K, LI J, et al. Safety issues caused by internal short circuits in lithium-ion batteries[J]. Journal of Materials Chemistry A, 2018, 6(43): 21475-21484. |
7 | LIU B H, DUAN X D, YUAN C H, et al. Quantifying and modeling of stress-driven short-circuits in lithium-ion batteries in electrified vehicles[J]. Journal of Materials Chemistry A, 2021, 9(11): 7102-7113. |
8 | LONG M C, DUAN P, GAO Y, et al. Boosting safety and performance of lithium-ion battery enabled by cooperation of thermotolerant fire-retardant composite membrane and nonflammable electrolyte[J]. Chemical Engineering Journal, 2022, doi:10.1016/j.cej.2021.134394 |
9 | LONG M C, WANG T, DUAN P H, et al. Thermotolerant and fireproof gel polymer electrolyte toward high-performance and safe lithium-ion battery[J]. Journal of Energy Chemistry, 2022, 65(2): 9-18. |
10 | CHE DAUD Z H, CHRENKO D, DOS SANTOS F, et al. 3D electro-thermal modelling and experimental validation of lithium polymer-based batteries for automotive applications[J]. International Journal of Energy Research, 2016, 40(8): 1144-1154. |
11 | LI X S, HE F, MA L. Thermal management of cylindrical batteries investigated using wind tunnel testing and computational fluid dynamics simulation[J]. Journal of Power Sources, 2013, 238: 395-402. |
12 | SHADMAN RAD M, DANILOV D L, BAGHALHA M, et al. Adaptive thermal modeling of Li-ion batteries[J]. Electrochimica Acta, 2013, 102: 183-195. |
13 | NASCIMENTO M, FERREIRA M S, PINTO J L. Real time thermal monitoring of lithium batteries with fiber sensors and thermocouples: A comparative study[J]. Measurement, 2017, 111: 260-263. |
14 | RAIJMAKERS L H J, DANILOV D L, EICHEL R A, et al. A review on various temperature-indication methods for Li-ion batteries[J]. Applied Energy, 2019, 240: 918-945. |
15 | WANG S X, LI K X, TIAN Y, et al. Infrared imaging investigation of temperature fluctuation and spatial distribution for a large laminated lithium-ion power battery[J]. Applied Thermal Engineering, 2019, 152: 204-214. |
16 | DAVID N A, WILD P M, HU J W, et al. In-fibre Bragg grating sensors for distributed temperature measurement in a polymer electrolyte membrane fuel cell[J]. Journal of Power Sources, 2009, 192(2): 376-380. |
17 | LEE C Y, LEE S J, TANG M S, et al. In situ monitoring of temperature inside lithium-ion batteries by flexible micro temperature sensors[J]. Sensors, 2011, 11(10): 9942-9950. |
18 | LEE C Y, PENG H C, LEE S J, et al. A flexible three-in-one microsensor for real-time monitoring of internal temperature, voltage and current of lithium batteries[J]. Sensors, 2015, 15(5): 11485-11498. |
19 | FLEMING J, AMIETSZAJEW T, CHARMET J, et al. The design and impact of in situ and operando thermal sensing for smart energy storage[J]. Journal of Energy Storage, 2019, 22: 36-43. |
20 | ZHU S X, HAN J D, AN H Y, et al. A novel embedded method for in situ measuring internal multi-point temperatures of lithium ion batteries[J]. Journal of Power Sources, 2020, 456:doi:10.1016/j.jpowsour.2020.227981. |
21 | KUMAR S S, PANT B D. Design principles and considerations for the 'ideal' silicon piezoresistive pressure sensor: A focused review[J]. Microsystem Technologies, 2014, 20(7): 1213-1247. |
22 | PENG J, ZHOU X, JIA S H, et al. High precision strain monitoring for lithium ion batteries based on fiber Bragg grating sensors[J]. Journal of Power Sources, 2019, 433:doi:10.1016/j.jpowsour.2019.226692. |
23 | YU Y F, VERGORI E, MADDAR F, et al. Real-time monitoring of internal structural deformation and thermal events in lithium-ion cell via embedded distributed optical fibre[J]. Journal of Power Sources, 2022, 521:doi:10.1016/j.jpowsour.2019.230957. |
24 | YU Y F, VINCENT T, SANSOM J, et al. Distributed internal thermal monitoring of lithium ion batteries with fibre sensors[J]. Journal of Energy Storage, 2022, 50:doi:10.1016/j.est.2022.104291. |
25 | NASCIMENTO M, NOVAIS S, DING M S, et al. Internal strain and temperature discrimination with optical fiber hybrid sensors in Li-ion batteries[J]. Journal of Power Sources, 2019, 410/411: 1-9. |
26 | RAGHAVAN A, KIESEL P, SOMMER L W, et al. Embedded fiber-optic sensing for accurate internal monitoring of cell state in advanced battery management systems (I): Cell embedding method and performance[J]. Journal of Power Sources, 2017, 341: 466-473. |
27 | SOMMER L W, KIESEL P, GANGULI A, et al. Fast and slow ion diffusion processes in lithium ion pouch cells during cycling observed with fiber optic strain sensors[J]. Journal of Power Sources, 2015, 296: 46-52. |
28 | HUANG J Q, HAN X L, LIU F, et al. Monitoring battery electrolyte chemistry via in-operando tilted fiber Bragg grating sensors[J]. Energy & Environmental Science, 2021, 14(12): 6464-6475. |
29 | HUANG J Q, ALBERO BLANQUER L, BONEFACINO J, et al. Operando decoding of chemical and thermal events in commercial Na(Li)-ion cells via optical sensors[J]. Nature Energy, 2020, 5(9): 674-683. |
30 | FORTIER A, TSAO M, WILLIARD N, et al. Preliminary study on integration of fiber optic Bragg grating sensors in Li-ion batteries and in situ strain and temperature monitoring of battery cells[J]. Energies, 2017, 10(7): 838. |
31 | HUANG S, DU Z J, ZHOU Q, et al. In situ measurement of temperature distributions in a Li-ion cell during internal short circuit and thermal runaway[J]. Journal of the Electrochemical Society, 2021, 168(9):doi:10.1149/1945-7111/acld7b. |
32 | LI Y, LIU X, WANG L, et al. Thermal runaway mechanism of lithium-ion battery with LiNi0.8Mn0.1Co0.1O2 cathode materials[J]. Nano Energy, 2021, 85:doi:10.1016/j.nanaen.2021.105878. |
33 | LAI X, WANG S Y, WANG H B, et al. Investigation of thermal runaway propagation characteristics of lithium-ion battery modules under different trigger modes[J]. International Journal of Heat and Mass Transfer, 2021, 171:doi:10.1016/j.ijheatmasstransfer.2021.121080. |
34 | PFRANG A, KERSYS A, KRISTON A, et al. Long-term cycling induced jelly roll deformation in commercial 18650 cells[J]. Journal of Power Sources, 2018, 392: 168-175. |
35 | SAUERTEIG D, IVANOV S, REINSHAGEN H, et al. Reversible and irreversible dilation of lithium-ion battery electrodes investigated by in situ dilatometry[J]. Journal of Power Sources, 2017, 342: 939-946. |
36 | WALDMANN T, GORSE S, SAMTLEBEN T, et al. A mechanical aging mechanism in lithium-ion batteries[J]. Journal of the Electrochemical Society, 2014, 161(10): A1742-A1747. |
37 | MUKHOPADHYAY A, SHELDON B W. Deformation and stress in electrode materials for Li-ion batteries[J]. Progress in Materials Science, 2014, 63: 58-116. |
38 | ZHU S X, YANG L, WEN J W, et al. In operando measuring circumferential internal strain of 18650 Li-ion batteries by thin film strain gauge sensors[J]. Journal of Power Sources, 2021, 516: doi:10.1016/j.jpowsour.2021.230669. |
39 | ZHU S X, YANG L, FAN J B, et al. In-situ obtained internal strain and pressure of the cylindrical Li-ion battery cell with silicon-graphite negative electrodes[J]. Journal of Energy Storage, 2021, 42:doi:10.1016/j.est.2021.103049. |
40 | SCHMITT J, KRAFT B, SCHMIDT J P, et al. Measurement of gas pressure inside large-format prismatic lithium-ion cells during operation and cycle aging[J]. Journal of Power Sources, 2020, 478:doi:10.1016/j.jpowsour.2020.228661. |
41 | SCHIELE A, HATSUKADE T, BERKES B B, et al. High-throughput in situ pressure analysis of lithium-ion batteries[J]. Analytical Chemistry, 2017, 89(15): 8122-8128. |
42 | MATASSO A, WONG D, WETZ D, et al. Correlation of bulk internal pressure rise and capacity degradation of commercial LiCoO2Cells[J]. Journal of the Electrochemical Society, 2014, 161(14): A2031-A2035. |
43 | KAUFMAN L A, MCCLOSKEY B D. Surface lithium carbonate influences electrolyte degradation via reactive oxygen attack in lithium-excess cathode materials[J]. Chemistry of Materials, 2021, 33(11): 4170-4176. |
44 | BOIVIN E, GUERRINI N, HOUSE R A, et al. The role of Ni and Co in suppressing O-loss in Li-rich layered cathodes[J]. Advanced Functional Materials, 2021, 31(2):doi:10.1002/adfm.2003660. |
45 | KANG Y S, PARK S Y, ITO K, et al. Revealing the structural degradation mechanism of the Ni-rich cathode surface: How thick is the surface? [J]. Journal of Power Sources, 2021, 490:doi:10.1016/j.jpowsour.2021.229542. |
46 | LUNDSTRÖM R, BERG E J. Design and validation of an online partial and total pressure measurement system for Li-ion cells[J]. Journal of Power Sources, 2021, 485:doi:10.1016/j.jpowsour.2021.229347. |
47 | LI B, JONES C M, ADAMS T E, et al. Sensor based in-operando lithium-ion battery monitoring in dynamic service environment[J]. Journal of Power Sources, 2021, 486:doi:10.1016/j.jpowsour.2021.229349. |
48 | LYU S Q, LI N, SUN L, et al. Rapid operando gas monitor for commercial lithium ion batteries: Gas evolution and relation with electrode materials[J]. Journal of Energy Chemistry, 2022, 72: 14-25. |
49 | YANG L, LI N, HU L K, et al. Internal field study of 21700 battery based on long-life embedded wireless temperature sensor[J]. Acta Mechanica Sinica, 2021, 37(6): 895-901. |
50 | FLEMING J, AMIETSZAJEW T, ROBERTS A. In-situ electronics and communications for intelligent energy storage[J]. HardwareX, 2022, 11: e00294. |
51 | VINCENT T A, GULSOY B, SANSOM J E H, et al. In-situ instrumentation of cells and power line communication data acquisition towards smart cell development[J]. Journal of Energy Storage, 2022, 50:doi:10.1016/j.est.2022.104218. |
[1] | 李海涛, 孔令丽, 张欣, 余传军, 王纪威, 徐琳. N/P设计对高镍NCM/Gr电芯性能的影响[J]. 储能科学与技术, 2022, 11(7): 2040-2045. |
[2] | 刘显茜, 孙安梁, 田川. 基于仿生翅脉流道冷板的锂离子电池组液冷散热[J]. 储能科学与技术, 2022, 11(7): 2266-2273. |
[3] | 陈龙, 夏权, 任羿, 曹高萍, 邱景义, 张浩. 多物理场耦合下锂离子电池组可靠性研究现状与展望[J]. 储能科学与技术, 2022, 11(7): 2316-2323. |
[4] | 易顺民, 谢林柏, 彭力. 基于VF-DW-DFN的锂离子电池剩余寿命预测[J]. 储能科学与技术, 2022, 11(7): 2305-2315. |
[5] | 祝庆伟, 俞小莉, 吴启超, 徐一丹, 陈芬放, 黄瑞. 高能量密度锂离子电池老化半经验模型[J]. 储能科学与技术, 2022, 11(7): 2324-2331. |
[6] | 王宇作, 王瑨, 卢颖莉, 阮殿波. 孔结构对软碳负极储锂性能的影响[J]. 储能科学与技术, 2022, 11(7): 2023-2029. |
[7] | 孔为, 金劲涛, 陆西坡, 孙洋. 对称蛇形流道锂离子电池冷却性能[J]. 储能科学与技术, 2022, 11(7): 2258-2265. |
[8] | 霍思达, 薛文东, 李新丽, 李勇. 基于CiteSpace知识图谱的锂电池复合电解质可视化分析[J]. 储能科学与技术, 2022, 11(7): 2103-2113. |
[9] | 邓健想, 赵金良, 黄成德. 高能量锂离子电池硅基负极黏结剂研究进展[J]. 储能科学与技术, 2022, 11(7): 2092-2102. |
[10] | 欧宇, 侯文会, 刘凯. 锂离子电池中的智能安全电解液研究进展[J]. 储能科学与技术, 2022, 11(6): 1772-1787. |
[11] | 韩俊伟, 肖菁, 陶莹, 孔德斌, 吕伟, 杨全红. 致密储能:基于石墨烯的方法学和应用实例[J]. 储能科学与技术, 2022, 11(6): 1865-1873. |
[12] | 燕乔一, 吴锋, 陈人杰, 李丽. 锂离子电池负极石墨回收处理及资源循环[J]. 储能科学与技术, 2022, 11(6): 1760-1771. |
[13] | 沈秀, 曾月劲, 李睿洋, 李佳霖, 李伟, 张鹏, 赵金保. γ射线辐照交联原位固态化阻燃锂离子电池[J]. 储能科学与技术, 2022, 11(6): 1816-1821. |
[14] | 丁奕, 杨艳, 陈锴, 曾涛, 黄云辉. 锂离子电池智能消防及其研究方法[J]. 储能科学与技术, 2022, 11(6): 1822-1833. |
[15] | 张言, 王海, 刘朝孟, 张德柳, 王佳东, 李建中, 高宣雯, 骆文彬. 锂离子电池富镍三元正极材料NCM的研究进展[J]. 储能科学与技术, 2022, 11(6): 1693-1705. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||