储能科学与技术 ›› 2022, Vol. 11 ›› Issue (6): 1822-1833.doi: 10.19799/j.cnki.2095-4239.2022.0024
丁奕1(), 杨艳2, 陈锴2, 曾涛1(), 黄云辉2()
收稿日期:
2022-01-23
修回日期:
2022-02-09
出版日期:
2022-06-05
发布日期:
2022-06-13
通讯作者:
曾涛,黄云辉
E-mail:412856249@qq.com;zhuhaozang@srim.com.cn;huangyh@hust.edu.cn
作者简介:
丁奕(1996—),男,硕士研究生,研究方向为锂离子电池热管理与智能消防,E-mail:412856249@qq.com;
基金资助:
DING Yi1(), YANG Yan2, CHEN Kai2, ZENG Tao1(), HUANG Yunhui2()
Received:
2022-01-23
Revised:
2022-02-09
Online:
2022-06-05
Published:
2022-06-13
Contact:
ZENG Tao, HUANG Yunhui
E-mail:412856249@qq.com;zhuhaozang@srim.com.cn;huangyh@hust.edu.cn
摘要:
锂离子电池是储能领域最具应用前景和市场价值的一类电化学器件,电池安全备受关注。研究电池热失控及智能消防对于提高储能系统安全性具有重要意义。本文对目前锂离子电池安全及智能消防方面的研究进行了梳理,现阶段的电池安全研究主要集中在本征安全、检测安全以及消防安全三个层面,但受限于该领域的研究起步较晚,依旧存在较多问题。我们结合锂离子电池安全研究现状,分析了电池热失控的过程及前后特点,指出了目前电池消防系统中存在的问题,并由此提出了电池智能消防系统的基本框架及其研究方法。通过将实际条件与实验条件结合分析,针对实验硬件和检测指标开展了讨论;重点聚焦研究平台中的电池燃烧载体的搭建与设计思路,并对热失控触发方式和喷淋系统的设计进行了总结与分析;同时提出了现有消防检测系统在锂电领域应用的局限性,详细介绍了锂离子电池智能消防中包括温度、电压、早期产气等重要预警指标的作用和其在研究中常用的采集及分析方式。
中图分类号:
丁奕, 杨艳, 陈锴, 曾涛, 黄云辉. 锂离子电池智能消防及其研究方法[J]. 储能科学与技术, 2022, 11(6): 1822-1833.
DING Yi, YANG Yan, CHEN Kai, ZENG Tao, HUANG Yunhui. Intelligent fire protection of lithium-ion battery and its research method[J]. Energy Storage Science and Technology, 2022, 11(6): 1822-1833.
1 | 卓萍, 倪照鹏, 杨凯, 等. 锂离子储能系统消防安全研究现状[J]. 消防科学与技术, 2019, 38(7): 1023-1027. |
ZHUO P, NI Z P, YANG K, et al. Research status on fire safety of Lithium ion energy storage system[J]. Fire Science and Technology, 2019, 38(7): 1023-1027. | |
2 | WANG J L, MAI Y J, LUO H, et al. Fluorosilane compounds with oligo(ethylene oxide) substituent as safe electrolyte solvents for high-voltage lithium-ion batteries[J]. Journal of Power Sources, 2016, 334: 58-64. |
3 | XIAO L F, ZENG Z Q, LIU X W, et al. Stable Li metal anode with "ion-solvent-coordinated" nonflammable electrolyte for safe Li metal batteries[J]. ACS Energy Letters, 2019, 4(2): 483-488. |
4 | JIANG X Y, ZHU X M, AI X P, et al. Novel ceramic-grafted separator with highly thermal stability for safe lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2017, 9(31): 25970-25975. |
5 | WEI Z B, ZHAO J Y, HE H W, et al. Future smart battery and management: Advanced sensing from external to embedded multi-dimensional measurement[J]. Journal of Power Sources, 2021, 489: doi: 10.1016/j.jpowsour.2021.229462. |
6 | HUSSEIN A A, FARDOUN A A. An adaptive sensorless measurement technique for internal temperature of Li-ion batteries using impedance phase spectroscopy[J]. IEEE Transactions on Industry Applications, 2020, 56(3): 3043-3051. |
7 | MAO B B, LIU C Q, YANG K, et al. Thermal runaway and fire behaviors of a 300 Ah lithium ion battery with LiFePO4 as cathode[J]. Renewable and Sustainable Energy Reviews, 2021, 139: doi: 10.1016/j.rser.2021.110717. |
8 | 王铭民, 姚效刚, 郭鹏宇,等. 各类灭火剂对磷酸铁锂电池模块火灾适用性研究[C]// 全国第四届“智能电网”会议论文集,2019. |
WANG M M, YAO X G, GUO P Y,et al. Study on fire applicability of various fire extinguishing agents to lithium iron phosphate battery module[C]// Proceedings of the 4th National "Smart Grid" Conference, 2019. | |
9 | RAO H, HUANG Z X, ZHANG H, et al. Study of fire tests and fire safety measures on lithiumion battery used on ships[C]//2015 International Conference on Transportation Information and Safety (ICTIS). June 25-28, 2015, Wuhan, China. IEEE, 2015: 865-870. |
10 | 朱伟杰, 董缇, 张树宏. 储能系统锂离子电池国内外安全标准对比分析[J]. 储能科学与技术, 2020, 9(1): 279-286. |
ZHU W J, DONG T, ZHANG S H. Comparative analysis of domestic and foreign safety standards for lithium-ion batteries for energy storage system[J]. Energy Storage Science and Technology, 2020, 9(1): 279-286. | |
11 | 冒爱琴, 丁赔赔, 丁梦玲, 等. 哈龙替代型含氟灭火剂灭火过程中HF生成及灭火机理研究进展[J]. 过程工程学报, 2016, 16(4): 714-720. |
MAO A Q, DING P P, DING M L, et al. Research progress on production mechanism of HF and its fire suppression mechanism of fluorine-containing fire extinguishing agents as halon alternatives[J]. The Chinese Journal of Process Engineering, 2016, 16(4): 714-720. | |
12 | GOODENOUGH J B, KIM Y. Challenges for rechargeable Li batteries[J]. Chemistry of Materials, 2010, 22(3): 587-603. |
13 | PING P, WANG Q S, HUANG P F, et al. Thermal behaviour analysis of lithium-ion battery at elevated temperature using deconvolution method[J]. Applied Energy, 2014, 129: 261-273. |
14 | BRAVO DIAZ L, HE X Z, HU Z W, et al. Review—meta-review of fire safety of lithium-ion batteries: Industry challenges and research contributions[J]. Journal of the Electrochemical Society, 2020, 167(9): 090559. |
15 | 黎可, 穆居易, 金翼, 等. 磷酸铁锂电池火灾危险性[J]. 储能科学与技术, 2021, 10(3): 1177-1186. |
LI K, MU J Y, JIN Y, et al. Fire risk of lithium iron phosphate battery[J]. Energy Storage Science and Technology, 2021, 10(3): 1177-1186. | |
16 | 张亚军, 王贺武, 冯旭宁, 等. 动力锂离子电池热失控燃烧特性研究进展[J]. 机械工程学报, 2019, 55(20): 17-27. |
ZHANG Y J, WANG H W, FENG X N, et al. Research progress on thermal runaway combustion characteristics of power lithiumion batteries[J]. Journal of Mechanical Engineering, 2019, 55(20): 17-27. | |
17 | PING P, KONG D P, ZHANG J Q, et al. Characterization of behaviour and hazards of fire and deflagration for high-energy Li-ion cells by over-heating[J]. Journal of Power Sources, 2018, 398: 55-66. |
18 | ROTH E P, DOUGHTY D H. Thermal abuse performance of high-power 18650 Li-ion cells[J]. Journal of Power Sources, 2004, 128(2): 308-318. |
19 | ESHETU G G, GRUGEON S, GACHOT G, et al. LiFSI vs. LiPF6 electrolytes in contact with lithiated graphite: Comparing thermal stabilities and identification of specific SEI-reinforcing additives[J]. Electrochimica Acta, 2013, 102: 133-141. |
20 | 杜志明, 陈佳炜. 锂离子电池热失控危险性研究进展[J]. 安全与环境学报, 2021, 21(4): 1523-1532. |
DU Z M, CHEN J W. Research progress on the risks of the thermal runaway in lithium-ion batteries[J]. Journal of Safety and Environment, 2021, 21(4): 1523-1532. | |
21 | FENG X N, OUYANG M G, LIU X, et al. Thermal runaway mechanism of lithium ion battery for electric vehicles: A review[J]. Energy Storage Materials, 2018, 10: 246-267. |
22 | 李首顶, 李艳, 田杰, 等. 锂离子电池电力储能系统消防安全现状分析[J]. 储能科学与技术, 2020, 9(5): 1505-1516. |
LI S D, LI Y, TIAN J, et al. Current status and emerging trends in the safety of Li-ion battery energy storage for power grid applications[J]. Energy Storage Science and Technology, 2020, 9(5): 1505-1516. | |
23 | 高飞, 刘皓, 吴从荣, 等. 锂离子电池热安全防控技术的研究进展[J]. 新能源进展, 2020, 8(1): 15-21. |
GAO F, LIU H, WU C R, et al. Research progress on thermal protection of energy storage lithium-ion battery[J]. Advances in New and Renewable Energy, 2020, 8(1): 15-21. | |
24 | 阚强, 陈满, 任常兴. 锂离子电池热失控气体燃爆特征实验研究[J]. 消防科学与技术, 2021, 40(7): 959-962. |
KAN Q, CHEN M, REN C X. Study on the characteristics of gas deflagration caused by the thermal runaway of lithium-ion battery[J]. Fire Science and Technology, 2021, 40(7): 959-962. | |
25 | LUO W T, ZHU S B, GONG J H, et al. Research and development of fire extinguishing technology for power lithium batteries[J]. Procedia Engineering, 2018, 211: 531-537. |
26 | 谢卓衡, 王子阳, 张刚, 等. 全氟己酮及细水雾灭火装置对大容量三元锂离子电池的灭火实验[J]. 储能科学与技术, 2022, 11(2): 652-659. |
XIE Z H, WANG Z Y, ZHANG G, et al. Experimental study on fire extinguishing of large-capacity ternary lithium-ion battery by perfluorohexanone and water mist fire extinguishing device[J]. Energy Storage Science and Technology, 2022, 11(2): 652-659. | |
27 | 毛思远, 肖修昆, 梁天水, 等. 锂离子电池热失控特性及电池火抑制过程[J]. 科学技术与工程, 2021, 21(15): 6519-6525. |
MAO S Y, XIAO X K, LIANG T S, et al. Thermal runaway characteristics and fire suppression process of lithium ion batteries[J]. Science Technology and Engineering, 2021, 21(15): 6519-6525. | |
28 | WANG Q S, LI K, WANG Y, et al. The efficiency of dodecafluoro-2-methylpentan-3-one on suppressing the lithium ion battery fire[J]. Journal of Electrochemical Energy Conversion and Storage, 2018, 15(4): 041001-041011. |
29 | LARSSON F, BERTILSSON S, FURLANI M, et al. Gas explosions and thermal runaways during external heating abuse of commercial lithium-ion graphite-LiCoO2 cells at different levels of ageing[J]. Journal of Power Sources, 2018, 373: 220-231. |
30 | 赵春朋, 王青松, 余彦. 密闭空间中锂离子电池的热爆炸危险性[J]. 储能科学与技术, 2018, 7(3): 424-430. |
ZHAO C P, WANG Q S, YU Y. Thermal explosion hazards of lithium-ion batteries in hermetic space[J]. Energy Storage Science and Technology, 2018, 7(3): 424-430. | |
31 | 张旭, 刘奕, 陈现涛, 等. 外部热源引起的锂离子电池热失控行为[J]. 电池, 2021, 51(1): 17-20. |
ZHANG X, LIU Y, CHEN X T, et al. Thermal runaway behavior of Li-ion battery caused by external heat power[J]. Battery Bimonthly, 2021, 51(1): 17-20. | |
32 | LIU P J, LI Y Q, MAO B B, et al. Experimental study on thermal runaway and fire behaviors of large format lithium iron phosphate battery[J]. Applied Thermal Engineering, 2021, 192: doi: 10.1016/j.applthermaleng.2021.116949. |
33 | ZHANG L, DUAN Q L, LIU Y J, et al. Experimental investigation of water spray on suppressing lithium-ion battery fires[J]. Fire Safety Journal, 2021, 120: doi:10.1016/j.firesaf.2020.103117. |
34 | 崔潇丹, 丛晓民, 赵林双. 锂离子电池热失控气体及燃爆危险性研究进展[J]. 电池, 2021, 51(4): 407-411. |
CUI X D, CONG X M, ZHAO L S. Research progress in thermal runaway gases and explosion hazards of Li-ion battery[J]. Battery Bimonthly, 2021, 51(4): 407-411. | |
35 | XIA L, XIA Y G, LIU Z P. A novel fluorocyclophosphazene as bifunctional additive for safer lithium-ion batteries[J]. Journal of Power Sources, 2015, 278: 190-196. |
36 | CHEN X B, CHEN S L, LIN Y S, et al. Multi-functional ceramic-coated separator for lithium-ion batteries safety tolerance improvement[J]. Ceramics International, 2020, 46(15): 24689-24697. |
37 | ZHANG J, LV D, SIMEONE A. Artificial neural network-based multisensor monitoring system for collision damage assessment of lithium-ion battery cells[J]. Energy Technology, 2020, 8(5): doi: 10.1002/ente.202000031. |
38 | WANG Z P, YUAN J, ZHU X Q, et al. Overcharge-to-thermal-runaway behavior and safety assessment of commercial lithium-ion cells with different cathode materials: A comparison study[J]. Journal of Energy Chemistry, 2021, 55: 484-498. |
39 | 董海斌, 张少禹, 李毅, 等. NCM811高比能锂离子电池热失控火灾特性[J]. 储能科学与技术, 2019, 8(S1): 65-70. |
DONG H B, ZHANG S Y, LI Y, et al. Thermal runaway fire characteristics of lithium ion batteries with high specific energy NCM811[J]. Energy Storage Science and Technology, 2019, 8(S1): 65-70. | |
40 | 李磊, 李钊, 姬丹, 等. 过充电触发的LFP和NCM锂离子电池的热失控行为:差异与原因[J]. 储能科学与技术, 2022, 11(5): 1419-1427. |
LI L, LI Z, JI D, et al. Overcharge induced thermal runaway behaviors of pouch-type lithium-ion batteries with LFP and NCM cathodes: The differences and reasons[J]. Energy Storage Science and Technology, 2022, 11(5): 1419-1427. | |
41 | NASCIMENTO M, FERREIRA M S, PINTO J L. Temperature fiber sensing of Li-ion batteries under different environmental and operating conditions[J]. Applied Thermal Engineering, 2019, 149: 1236-1243. |
42 | NASCIMENTO M, FERREIRA M S, PINTO J L. Real time thermal monitoring of lithium batteries with fiber sensors and thermocouples: A comparative study[J]. Measurement, 2017, 111: 260-263. |
43 | 龚雪, 张认成, 黄湘莹, 等. 气体火灾探测器的研究与发展[J].消防科学与技术, 2005, 24(6): 735-737. |
44 | LEHMLER H J. Synthesis of environmentally relevant fluorinated surfactants—A review[J]. Chemosphere, 2005, 58(11): 1471-1496. |
45 | XU J J, GUO P Y, DUAN Q L, et al. Experimental study of the effectiveness of three kinds of extinguishing agents on suppressing lithium-ion battery fires[J]. Applied Thermal Engineering, 2020, 171: doi:10.1016/j.applthermaleng.2020.115076. |
46 | 曾毓华.氟碳表面活性剂[J]. 有机硅氟资讯, 2001 (3):20-20. |
Zeng Y H.Fluorocarbon surfactant[J]. Silicone Fluorine Information, 2001(3):20-20. | |
47 | LIU Y J, DUAN Q L, XU J J, et al. Experimental study on a novel safety strategy of lithium-ion battery integrating fire suppression and rapid cooling[J]. Journal of Energy Storage, 2020, 28: doi: 10.1016/j.est.2019.101185. |
48 | 羡学磊, 董海斌, 张少禹, 等. 三元锂离子动力电池热失控及火灾特性研究[J]. 储能科学与技术, 2020, 9(1): 239-248. |
XIAN X L, DONG H B, ZHANG S Y, et al. Thermal runaway and fire characteristics of NCM lithium-ion power battery[J]. Energy Storage Science and Technology, 2020, 9(1): 239-248. | |
49 | RAGHAVAN A, KIESEL P, SOMMER L W, et al. Embedded fiber-optic sensing for accurate internal monitoring of cell state in advanced battery management systems part 1: Cell embedding method and performance[J]. Journal of Power Sources, 2017, 341: 466-473. |
50 | SRINIVASAN R, DEMIREV P A, CARKHUFF B G. Rapid monitoring of impedance phase shifts in lithium-ion batteries for hazard prevention[J]. Journal of Power Sources, 2018, 405: 30-36. |
51 | MAO B B, HUANG P F, CHEN H D, et al. Self-heating reaction and thermal runaway criticality of the lithium ion battery[J]. International Journal of Heat and Mass Transfer, 2020, 149: doi:10.1016/j.ijheatmasstransfer.2019.119178. |
52 | 龚雪, 张认成, 黄湘莹, 等. 气体火灾探测器的研究与发展[J]. 消防科学与技术, 2005, 24(6): 735-737. |
GONG X, ZHANG R C, HUANG X Y, et al. Current research and development trends of gas fire detector[J]. Fire Science and Technology, 2005, 24(6): 735-737. | |
53 | 王春力, 贡丽妙, 亢平, 等. 锂离子电池储能电站早期预警系统研究[J]. 储能科学与技术, 2018, 7(6): 1152-1158. |
WANG C L, GONG L M, KANG P, et al. Research on early warning system of lithium ion battery energy storage power station[J]. Energy Storage Science and Technology, 2018, 7(6): 1152-1158. | |
54 | 李毅, 于东兴, 张少禹, 等. 典型锂离子电池火灾灭火试验研究[J]. 安全与环境学报, 2015, 15(6): 120-125. |
LI Y, YU D X, ZHANG S Y, et al. On the fire extinguishing tests of typical Lithium-ion battery[J]. Journal of Safety and Environment, 2015, 15(6): 120-125. | |
55 | 张明杰, 杨凯, 张坚, 等. 七氟丙烷对磷酸铁锂储能电池的灭火效果[J]. 消防科学与技术, 2020, 39(5): 649-652. |
ZHANG M J, YANG K, ZHANG J, et al. Fire extinguishing effect of heptafluoropropane on lithium iron phosphate energy storage battery[J]. Fire Science and Technology, 2020, 39(5): 649-652. | |
56 | 徐雪春. 浅析锂离子电池火灾危险性及扑救方法[J]. 今日消防, 2020, 5(2): 78-79. |
XU X C. A brief analysis on the fire risk of lithium ion battery and its fighting methods[ [J]. Fire Protection Today, 2020, 5(2): 78-79. | |
57 | 刘昱君, 段强领, 黎可, 等. 多种灭火剂扑救大容量锂离子电池火灾的实验研究[J]. 储能科学与技术, 2018, 7(6): 1105-1112. |
LIU Y J, DUAN Q L, LI K, et al. Experimental study on fire extinguishing of large-capacity lithium-ion batteries by various fire extinguishing agents[J]. Energy Storage Science and Technology, 2018, 7(6): 1105-1112. |
[1] | 李海涛, 孔令丽, 张欣, 余传军, 王纪威, 徐琳. N/P设计对高镍NCM/Gr电芯性能的影响[J]. 储能科学与技术, 2022, 11(7): 2040-2045. |
[2] | 曾伟, 熊俊杰, 李建林, 马速良, 武亦文. 基于权重自适应鲸鱼优化算法的多能系统储能电站最优配置[J]. 储能科学与技术, 2022, 11(7): 2241-2249. |
[3] | 姚祯, 张琦, 王锐, 刘庆华, 王保国, 缪平. 生物质衍生碳材料在全钒液流电池电极方面的应用[J]. 储能科学与技术, 2022, 11(7): 2083-2091. |
[4] | 时雨, 张忠, 杨晶莹, 钱薇, 李昊, 赵祥, 杨欣桐. 储能电池系统提供AGC调频的机会成本建模与市场策略[J]. 储能科学与技术, 2022, 11(7): 2366-2373. |
[5] | 刘显茜, 孙安梁, 田川. 基于仿生翅脉流道冷板的锂离子电池组液冷散热[J]. 储能科学与技术, 2022, 11(7): 2266-2273. |
[6] | 陈龙, 夏权, 任羿, 曹高萍, 邱景义, 张浩. 多物理场耦合下锂离子电池组可靠性研究现状与展望[J]. 储能科学与技术, 2022, 11(7): 2316-2323. |
[7] | 韩健民, 薛飞宇, 梁双印, 乔天舒. 模糊控制优化下的混合储能系统辅助燃煤机组调频仿真[J]. 储能科学与技术, 2022, 11(7): 2188-2196. |
[8] | 鲁志颖, 江杉, 李全龙, 马可心, 傅腾, 郑志刚, 刘志成, 李淼, 梁永胜, 董知非. 全钒液流电池在充电结束搁置阶段的开路电压变化[J]. 储能科学与技术, 2022, 11(7): 2046-2050. |
[9] | 易顺民, 谢林柏, 彭力. 基于VF-DW-DFN的锂离子电池剩余寿命预测[J]. 储能科学与技术, 2022, 11(7): 2305-2315. |
[10] | 冯国会, 王天雨, 王刚. 封装方式对相变水箱蓄放热性能影响模拟分析[J]. 储能科学与技术, 2022, 11(7): 2161-2176. |
[11] | 董树锋, 刘灵冲, 唐坤杰, 赵海祺, 徐成司, 林立亨. 基于Simulink和低代码控制器的储能控制实验教学方法[J]. 储能科学与技术, 2022, 11(7): 2386-2397. |
[12] | 祝庆伟, 俞小莉, 吴启超, 徐一丹, 陈芬放, 黄瑞. 高能量密度锂离子电池老化半经验模型[J]. 储能科学与技术, 2022, 11(7): 2324-2331. |
[13] | 王宇作, 王瑨, 卢颖莉, 阮殿波. 孔结构对软碳负极储锂性能的影响[J]. 储能科学与技术, 2022, 11(7): 2023-2029. |
[14] | 郭雨涵, 郁丹, 杨鹏, 王子绩, 王金涛. 基于贪婪算法的分布式储能系统容量优化配置方法[J]. 储能科学与技术, 2022, 11(7): 2295-2304. |
[15] | 袁性忠, 胡斌, 郭凡, 严欢, 贾宏刚, 苏舟. 欧盟储能政策和市场规则及对我国的启示[J]. 储能科学与技术, 2022, 11(7): 2344-2353. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||