储能科学与技术 ›› 2014, Vol. 3 ›› Issue (2): 96-105.doi: 10.3969/j.issn.2095-4239.2014.02.002
陈彬, 王昊, 闫勇, 徐凯琪, 林明翔, 唐代春, 董金平, 孙洋, 贲留斌, 黄学杰
收稿日期:
2014-02-15
出版日期:
2014-03-01
发布日期:
2014-03-01
通讯作者:
黄学杰,研究员,E-mail:xjhuang@jphy.ac.an.
作者简介:
陈彬(1989--),男,硕士研究生,研究方向为锂离子电池正极材料,E-mail:chenbin20081552@163.com;
CHEN Bin, WANG Hao, YAN Yong, XU Kaiqi, LIN Mingxiang, TANG Daichun, DONG Jinping, SUN Yang, BEN Liubin, HUANG Xuejie
Received:
2014-02-15
Online:
2014-03-01
Published:
2014-03-01
摘要: 该文是一篇近两个月的锂电池文献评述,我们以"lithium"和"batter*"为关键词检索了Web of Science从2013年12月1日至2014年1月31日上线的锂电池研究论文,共有971篇,选择其中90篇加以评论.层状氧化物正极材料的研究主要包括包覆等表面层改性对材料充放电循环寿命的影响,也有对钴酸锂材料的深入研究,高电压的尖晶石结构LiNi0.5M1.5O4材料主要研究了掺杂和合成方法改进的影响,磷酸铁锂和锰酸锂的研究集中在充放电过程中结构变化的细致分析方面.高容量的硅基负极材料一直是研究的热点,碳材料与锗,锡等复合负极材料,电解液添加剂,锂空电池,锂硫电池的论文也有多篇.理论模拟工作包括正极材料和硅的动力学过程研究和电解液添加剂作用机理,锂空电池电极过程等.除了这些以材料为主的研究之外,针对电池的原位分析,电池模型的研究论文大量出现.
中图分类号:
陈彬, 王昊, 闫勇, 徐凯琪, 林明翔, 唐代春, 董金平, 孙洋, 贲留斌, 黄学杰. 锂电池热点论文点评(2013.12.1--2014.1.31)[J]. 储能科学与技术, 2014, 3(2): 96-105.
CHEN Bin, WANG Hao, YAN Yong, XU Kaiqi, LIN Mingxiang, TANG Daichun, DONG Jinping, SUN Yang, BEN Liubin, HUANG Xuejie. Reviews of selected recent important papers for lithium batteries(Dec. 1,2013 to Jan. 31,2014)[J]. Energy Storage Science and Technology, 2014, 3(2): 96-105.
[1] Amalraj F,Talianker M,Markovsky B, et al . Studies of Li and Mn-rich Li x [MnNiCo]O 2 electrodes:Electrochemical performance, structure,and the effect of the aluminum fluoride coating[J]. Journal of the Electrochemical Society ,2013,160(11): A2220-A2233. [2] Liu Y J,Gao Y Y,Lv J, et al . A facile method to synthesize carbon coated Li 1.2 Ni 0.2 Mn 0.6 O 2 with improved performance[J]. Materials Research Bulletin ,2013,48(11):4930-4934. [3] Zheng J M,Shi W,Gu M, et al. Electrochemical kinetics and performance of layered composite cathode material Li[Li 0.2 Ni 0.2 Mn 0.6 ]O 2 [J]. Journal of the Electrochemical Society , 2013,160(11):A2212-A2219. [4] Wu F,Li N,Su Y F, et al. Spinel/layered heterostructured cathode material for high-capacity and high-rate Li-ion batteries[J]. Advanced Materials ,2013,25(27):3722-3726. [5] Bhuvaneswari D,Babu G,Kalaiselvi N. Effect of surface modifiers in improving the electrochemical behavior of LiNi 0.4 Mn 0.4 Co 0.2 O 2 cathode[J]. Electrochimica Acta ,2013,109: 684-693. [6] Jiang Q L,Du K,He Y H. A novel method for preparation of LiNi 1/3 Mn 1/3 Co 1/3 O 2 cathode material for Li-ion batteries[J]. Electrochimica Acta ,2013,107:133-138. [7] Wetjen M,Kim G T,Joost M, et al . Thermal and electrochemical properties of PEO-LiTFSI-Pyr 14 TFSI-based composite cathodes, incorporating 4 V-class cathode active materials[J]. Journal of Power Sources ,2014,246:846-857. [8] Watanabe S,Kinoshita M,Nakura K. Capacity fade of LiNi (1- x - y ) Co x Al y O 2 cathode for lithium-ion batteries during accelerated calendar and cycle life test I:Comparison analysis between LiNi (1- x - y ) Co x Al y O 2 and Li CoO 2 cathodes in cylindrical lithium-ion cells during long term storage test[J]. Journal of Power Sources ,2014,247:412-422. [9] Taguchi N,Akita T,Sakaebe H, et al . Characterization of the surface of LiCoO 2 particles modified by Al and Si oxide using analytical TEM[J]. Journal of the Electrochemical Society , 2013,160(11):A2293-A2298. [10] Nishio K,Ohnishi T,Akatsuka K, et al . Crystal orientation of epitaxial LiCoO 2 films grown on SrTiO 3 substrates[J]. Journal of Power Sources ,2014,247:687-691. [11] Maram P S,Costa G C C,Navrotsky A. Experimental confirmation of low surface energy in LiCoO 2 and implications for lithium battery electrodes[J]. Angewandte Chemie-International Edition ,2013, 52(46):12139-12142. [12] Chemelewski K R,Li W,Gutierrez A, et al . High-voltage spinel cathodes for lithium-ion batteries:Controlling the growth of preferred crystallographic planes through cation doping[J]. Journal of Materials Chemistry A ,2013,1(48):15334-15341. [13] Kim H J,Jin B S,Doh C H, et al . Improved electrochemical performance of doped-LiNi 0.5 Mn 1.5 O 4 cathode material for lithium-ion batteries[J]. Electronic Materials Letters ,2013, 9(6):851-854. [14] Liu G Q,Zhang L X,Sun L, et al . A new strategy to diminish the 4 V voltage plateau of LiNi 0.5 Mn 1.5 O 4 [J]. Materials Research Bulletin ,2013,48(11):4960-4962. [15] Pang W K,Sharma N,Peterson V K, et al . In-situ neutron diffraction study of the simultaneous structural evolution of a LiNi 0.5 Mn 1.5 O 4 cathode and a Li 4 Ti 5 O 12 anode in a LiNi 0.5 Mn 1.5 O 4 parallel to Li 4 Ti 5 O 12 full cell[J]. Journal of Power Sources , 2014,246:464-472. [16] Konishi H,Suzuki K,Taminato S, et al . Structure and electrochemical properties of LiNi 0.5 Mn 1.5 O 4 epitaxial thin film electrodes[J]. Journal of Power Sources ,2014,246:365-370. [17] Vidal E,Rojo J M,Garcia-alegre M C, et al . Effect of composition,sonication and pressure on the rate capability of 5 V-LiNi 0.5 Mn 1.5 O 4 composite cathodes[J]. Electrochimica Acta , 2013,108:175-181. [18] Lee S,Jeong M,Cho J. Optimized 4 V spinel cathode material with high energy density for Li-ion cells operating at 60 ℃[J]. Advanced Energy Materials ,2013,3(12):1623-1629. [19] Lee S,Oshima Y,Hosono E, et al . In situ TEM observation of local phase transformation in a rechargeable LiMn 2 O 4 nanowire battery[J]. Journal of Physical Chemistry C ,2013,117(46): 24236-24241. [20] Ichitsubo T,Doi T,Tokuda K, et al . What determines the critical size for phase separation in LiFePO 4 in lithium ion batteries?[J]. Journal of Materials Chemistry A ,2013,1(46):14532-14537. [21] Sugar J D,El Gabaly F,Chueh W C, et al . High-resolution chemical analysis on cycled LiFePO 4 battery electrodes using energy-filtered transmission electron microscopy[J]. Journal of Power Sources ,2014,246:512-521. [22] Zhu Y J,Wang J W,Liu Y, et al . In situ atomic-scale imaging of phase boundary migration in FePO 4 microparticles during electrochemical lithiation[J]. Advanced Materials ,2013, 25(38):5461-5466. [23] Wang B,Li X L,Zhang X F, et al . Contact-engineered and void-involved silicon/carbon nanohybrids as lithium-ion-battery anodes[J]. Advanced Materials ,2013,25(26):3560-3565. [24] Zeilinger M,Kurylyshyn I M,Haussermann U, et al . Revision of the Li-Si phase diagram:Discovery and single-crystal X-ray structure determination of the high-temperature phase Li 4.11 Si[J]. Chemistry of Materials ,2013,25(22):4623-4632. [25] Cho J H,Picraux S T. Enhanced lithium ion battery cycling of silicon nanowire anodes by template growth to eliminate silicon underlayer islands[J]. Nano Letters ,2013,13(11):5740-5747. [26] Lee K J,Yu S H,Kim J J, et al . Si 7 Ti 4 Ni 4 as a buffer material for Si and its electrochemical study for lithium ion batteries[J]. Journal of Power Sources ,2014,246:729-735. [27] Sim S,Oh P,Park S, et al . Critical thickness of SiO 2 coating layer on core@shell bulk@nanowire Si anode materials for Li-ion batteries[J]. Advanced Materials ,2013,25(32):4498-4503. [28] Wu M Y,Sabisch J E C,Song X Y, et al . In situ formed Si nanoparticle network with micron-sized Si particles for lithium-ion battery anodes[J]. Nano Letters ,2013,13(11):5397-5402. [29] Fu K,Yildiz O,Bhanushali H, et al . Aligned carbon nanotube-silicon sheets:A novel nano-architecture for flexible lithium ion battery electrodes[J]. Advanced Materials ,2013, 25(36):5109-5114. [30] Nguyen D T,Nguyen C C,Kim J S, et al . Facile synthesis and high anode performance of carbon fiber-interwoven amorphous nano-SiO x /graphene for rechargeable lithium batteries[J]. ACS Applied Materials & Interfaces ,2013,5(21):11234-11239. [31] Park J,Park S S,Won Y S. In situ XRD study of the structural changes of graphite anodes mixed with SiO x during lithium insertion and extraction in lithium ion batteries[J]. Electrochimica Acta ,2013,107:467-472. [32] Pharr M,Suo Z G,Vlassak J J. Measurements of the fracture energy of lithiated silicon electrodes of Li-ion batteries[J]. Nano Letters ,2013,13(11):5570-5577. [33] Wang C,Wu H,Chen Z, et al . Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries[J]. Nature Chemistry ,2013,5(12): 1043-1049. [34] Jin S X,Li N,Cui H, et al . Growth of the vertically aligned graphene@amorphous GeO x sandwich nanoflakes and excellent Li storage properties[J]. Nano Energy ,2013,2(6):1128-1136. [35] Kim G P,Nam I,Park S, et al . Preparation via an electrochemical method of graphene films coated on both sides with NiO nanoparticles for use as high-performance lithium ion anodes[J]. Nanotechnology ,2013,24(47),doi:10.1088/0957-4484/24/47/ 475402. [36] Li D,Seng K H,Shi D Q, et al . A unique sandwich-structured C/Ge/graphene nanocomposite as an anode material for high power lithium ion batteries[J]. Journal of Materials Chemistry A ,2013,1(45):14115-14121. [37] Odkhuu D,Jung D H,Lee H, et al . Negatively curved carbon as the anode for lithium ion batteries[J]. Carbon ,2014,66:39-47. [38] Chen Y M,Li X Y,Park K, et al . Hollow carbon-nanotube/ carbon-nanofiber hybrid anodes for Li-ion batteries[J]. Journal of the American Chemical Society ,2013,135(44):16280-16283. [39] Jana M,Sil A,Ray S. Morphology of carbon nanostructures and their electrochemical performance for lithium ion battery[J]. Journal of Physics and Chemistry of Solids ,2014,75(1):60-67. [40] Chang K,Geng D S,Li X F, et al . Ultrathin MoS 2 /nitrogen-doped graphene nanosheets with highly reversible lithium storage[J]. Advanced Energy Materials ,2013,3(7):839-844. [41] Chen P,Su Y,Liu H, et al . Interconnected tin disulfide nanosheets grown on graphene for Li-ion storage and photocatalytic applications[J]. ACS Applied Materials & Interfaces ,2013, 5(22):12073-12082. [42] Nobili F,Meschini I,Mancini M, et al . High-performance Sn@carbon nanocomposite anode for lithium-ion batteries:Lithium storage processes characterization and low-temperature behavior[J]. Electrochimica Acta ,2013,107:85-92. [43] Wei W,Guo L. One-step in situ synthesis of GeO 2 /graphene composites anode for high-performance Li-ion batteries[J]. Particle & Particle Systems Characterization ,2013,30(8):658-661. [44] Chen Q,Sieradzki K. Spontaneous evolution of bicontinuous nanostructures in dealloyed Li-based systems[J]. Nature Materials ,2013,12(12):1102-1106. [45] Kitta M,Matsuda T,Maeda Y, et al . Atomistic structure of a spinel Li 4 Ti 5 O 12 (111)surface elucidated by scanning tunneling microscopy and medium energy ion scattering spectrometry[J]. Surface Science ,2014,619:5-9. [46] Ui K,Fujii D,Niwata Y, et al . Analysis of solid electrolyte interface formation reaction and surface deposit of natural graphite negative electrode employing polyacrylic acid as a binder[J]. Journal of Power Sources ,2014,247:981-990. [47] Barteau K P,Wolffs M,Lynd N A, et al . Allyl glycidyl ether-based polymer electrolytes for room temperature lithium batteries[J]. Macromolecules ,2013,46(22):8988-8994. [48] Cheng L,Park J S,Hou H M, et al . Effect of microstructure and surface impurity segregation on the electrical and electrochemical properties of dense Al-substituted Li 7 La 3 Zr 2 O 12 [J]. Journal of Materials Chemistry A ,2014,2(1):172-181. [49] Loebl A J,Oldham C J,Devine C K, et al . Solid electrolyte interphase on lithium-ion carbon nanofiber electrodes by atomic and molecular layer deposition[J]. Journal of the Electrochemical Society ,2013,160(11):A1971-A1978. [50] Pieczonka N P W,Yang L,Balogh M P, et al . Impact of lithium bis (oxalate) borate electrolyte additive on the performance of high-voltage spinel/graphite Li-ion batteries[J]. Journal of Physical Chemistry C ,2013,117(44):22603-22612. [51] Xu M Q,Zhou L,Dong Y N, et al . Improving the performance of graphite/LiNi 0.5 Mn 1.5 O 4 cells at high voltage and elevated temperature with added lithium bis (oxalato) borate (LiBOB)[J]. Journal of the Electrochemical Society ,2013,160(11): A2005-A2013. [52] Cao X,Li Y X,Li X B, et al . Novel phosphamide additive to improve thermal stability of solid electrolyte lnterphase on graphite anode in lithium-lon batteries[J]. ACS Applied Materials & Interfaces ,2013,5(22):11494-11497. [53] Yamada Y,Yaegashi M,Abe T, et al . A superconcentrated ether electrolyte for fast-charging Li-ion batteries[J]. Chemical Communications ,2013,49(95):11194-11196. [54] Giordani V,Bryantsev V S,Uddin J, et al . N-methylacetamide as an electrolyte solvent for rechargeable LiO 2 batteries:Unexpected stability at the O 2 electrode[J]. ECS Electrochemistry Letters , 2014,3(1):A11-A14. [55] Hogstrom K C,Malmgren S,Hahlin M, et al . The influence of PMS-additive on the electrode/electrolyte interfaces in LiFePO 4 /graphite Li-ion batteries[J]. Journal of Physical Chemistry C ,2013, 117(45):23476-23486. [56] Zhu Y,Casselman M D,Li Y, et al . Perfluoroalkyl-substituted ethylene carbonates:Novel electrolyte additives for high-voltage lithium-ion batteries[J]. Journal of Power Sources ,2014, 246:184-191. [57] Kim S Y,Lee H T,Kim K B. Electrochemical properties of graphene flakes as an air cathode material for LiO 2 batteries in an ether-based electrolyte[J]. Physical Chemistry Chemical Physics , 2013,15(46):20262-20271. [58] Sun K,Wei T S,Ahn B Y, et al . 3D Printing of interdigitated Li-ion microbattery architectures[J]. Advanced Materials ,2013, 25(33):4539-4543. [59] Zheng J M,Gu M,Wang C M, et al . Controlled nucleation and growth process of Li 2 S 2 /Li 2 S in lithium-sulfur batteries[J]. Journal of the Electrochemical Society ,2013,160(11):A1992-A1996. [60] Arruda T M,Lawton J S,Kumar A, et al . In situ formation of micron-scale Li-metal anodes with high cyclability[J]. ECS Electrochemistry Letters ,2014,3(1):A4-A7. [61] Fu Y Z,Zu C X,Manthiram A. In situ-formed Li 2 S in lithiated graphite electrodes for lithium-sulfur batteries[J]. Journal of the American Chemical Society ,2013,135(48):18044-18047. [62] Placke T,Rothermel S,Fromm O, et al . Influence of graphite characteristics on the electrochemical intercalation of bis (trifluoromethane- sulfonyl) imide anions into a graphite-based cathode[J]. Journal of the Electrochemical Society ,2013,160(11):A1979-A1991. [63] Bettge M,Li Y,Gallagher K, et al . Voltage fade of layered oxides:Its measurement and impact on energy density[J]. Journal of the Electrochemical Society ,2013,160(11):A2046-A2055. [64] Allu S,Kalnaus S,Elwasif W, et al . A new open computational framework for highly-resolved coupled three-dimensional multiphysics simulations of Li-ion cells[J]. Journal of Power Sources , 2014,246:876-886. [65] Christensen J,Cook D,Albertus P. An efficient parallelizable 3D thermoelectrochemical model of a Li-ion cell[J]. Journal of the Electrochemical Society ,2013,160(11):A2258-A2267. [66] Delacourt C. Modeling Li-ion batteries with electrolyte additives or contaminants[J]. Journal of the Electrochemical Society ,2013, 160(11):A1997-A2004. [67] Hu Y Y,Liu Z G,Nam K W, et al . Origin of additional capacities in metal oxide lithium-ion battery electrodes[J]. Nature Materials , 2013,12(12):1130-1136. [68] Akolkar R. Modeling dendrite growth during lithium electrodeposition at sub-ambient temperature[J]. Journal of Power Sources ,2014,246:84-89. [69] Eddahech A,Briat O,Vinassa J M. Thermal characterization of a high-power lithium-ion battery:Potentiometric and calorimetric measurement of entropy changes[J]. Energy ,2013,61:432-439. [70] Krachkoyskiy S A,Pauric A D,Halalay I C, et al . Slice-selective NMR diffusion measurements:A robust and reliable tool for in situ characterization of ion-transport properties in lithium-ion battery electrolytes[J]. Journal of Physical Chemistry Letters ,2013, 4(22):3940-3944. [71] Bianchini M,Leriche J B,Laborier J L, et al . A new null matrix electrochemical cell for rietveld refinements of in-situ or operando neutron powder diffraction data[J]. Journal of the Electrochemical Society ,2013,160(11):A2176-A2183. [72] Johnsen R E,Norby P. Capillary-based micro-battery cell for in situ X-ray powder diffraction studies of working batteries:A study of the initial intercalation and deintercalation of lithium into graphite[J]. Journal of Applied Crystallography ,2013,46:1537-1543. [73] Lee S H,You H G,Han K S, et al . A new approach to surface properties of solid electrolyte interphase on a graphite negative electrode[J]. Journal of Power Sources ,2014,247:307-313. [74] Ebner M,Geldmacher F,Marone F, et al . X-ray tomography of porous,transition metal oxide based lithium ion battery electrodes[J]. Advanced Energy Materials ,2013,3(7): 845-850. [75] Maher K,Yazami R. A study of lithium ion batteries cycle aging by thermodynamics techniques[J]. Journal of Power Sources ,2014, 247:527-533. [76] Schmid M J,Bickel K R,Novak P, et al . Microcalorimetric measurements of the solvent contribution to the entropy changes upon electrochemical lithium bulk deposition[J]. Angewandte Chemie-International Edition ,2013,52(50):13233-13237. [77] Shono K,Kobayashi T,Tabuchi M, et al . Proposal of simple and novel method of capacity fading analysis using pseudo-reference electrode in lithium ion cells:Application to solvent-free lithium ion polymer batteries[J]. Journal of Power Sources ,2014,247: 1026-1032. [78] Okamoto A,Niwa N,Egashira M, et al . Application of electrodeposited aluminum foil to the current collector of positive electrode for lithium-ion batteries[J]. Electrochemistry ,2013, 81(11):906-911. [79] Gu M,Parent L R,Mehdi B L, et al . Demonstration of an electrochemical liquid cell for operando transmission electron microscopy observation of the lithiation/delithiation behavior of Si nanowire battery anodes[J]. Nano Letters ,2013,13(12): 6106-6112. [80] Chiuhuang C K,Huang H Y S. Stress evolution on the phase boundary in LiFePO 4 particles[J]. Journal of the Electrochemical Society ,2013,160(11):A2184-A2188. [81] Sushko P V,Rosso K M,Zhang J G, et al . Oxygen vacancies and ordering of d-levels control voltage suppression in oxide cathodes:The case of spinel LiNi 0.5 Mn 1.5 O 4 -delta[J]. Advanced Functional Materials ,2013,23(44):5530-5535. [82] Lang L,Dong C D,Chen G H, et al . Self-stopping effects of lithium penetration into silicon nanowires[J]. Nanoscale ,2013, 5(24):12394-12398. [83] Malyi O,Kulish V V,Tan T L, et al . A computational study of the insertion of Li,Na,and Mg atoms into Si(111)nanosheets[J]. Nano Energy ,2013,2(6):1149-1157. [84] Okoshi M,Yamada Y,Yamada A, et al . Theoretical analysis on de-solvation of lithium,sodium,and magnesium cations to organic electrolyte solvents[J]. Journal of the Electrochemical Society , 2013,160(11):A2160-A2165. [85] Shkrob I A,Zhu Y,Marin T W, et al . Mechanistic insight into the protective action of bis (oxalato) borate and difluoro (oxalate) borate anions in Li-ion batteries[J]. Journal of Physical Chemistry C ,2013,117(45):23750-23756. [86] Leung K,Tenney C M. Toward first principles prediction of voltage dependences of electrolyte/electrolyte interfacial processes in lithium ion batteries[J]. Journal of Physical Chemistry C ,2013, 117(46):24224-24235. [87] Seyyedhosseinzadeh H,Mahboubi F,Azadmehr A. Diffusion mechanism of lithium ions in LiNi 0.5 Mn 1.5 O 4 [J]. Electrochimica Acta ,2013,108:867-875. [88] Dai Y L,Cai L,White R E. Simulation and analysis of stress in a Li-ion battery with a blended LiMn 2 O 4 and LiNi 0.8 Co 0.15 Al 0.05 O 2 cathode[J]. Journal of Power Sources ,2014,247:365-376. [89] Jin L Y,De Leeuw S,Koudriachova M V, et al . Molecular insights:Structure and dynamics of a Li-ion doped organic ionic plastic crystal[J]. Physical Chemistry Chemical Physics ,2013, 15(45):19570-19574. [90] Ji Y,Wang C Y. Heating strategies for Li-ion batteries operated from subzero temperatures[J]. Electrochimica Acta ,2013,107: 664-674. |
[1] | 元佳宇, 李昕光, 王文超, 付程阔. 考虑质量流量的电池组蛇形冷却结构仿真[J]. 储能科学与技术, 2022, 11(7): 2274-2281. |
[2] | 时雨, 张忠, 杨晶莹, 钱薇, 李昊, 赵祥, 杨欣桐. 储能电池系统提供AGC调频的机会成本建模与市场策略[J]. 储能科学与技术, 2022, 11(7): 2366-2373. |
[3] | 黄鹏, 聂枝根, 陈峥, 舒星, 沈世全, 杨继鹏, 申江卫. 基于优化Elman神经网络的锂电池容量预测[J]. 储能科学与技术, 2022, 11(7): 2282-2294. |
[4] | 张肖洒, 王宏源, 李振彪, 夏志美. 废旧磷酸铁锂电池电极材料的硫酸化焙烧-水浸新工艺[J]. 储能科学与技术, 2022, 11(7): 2066-2074. |
[5] | 徐雄文, 聂阳, 涂健, 许峥, 谢健, 赵新兵. 普鲁士蓝正极软包钠离子电池的滥用性能[J]. 储能科学与技术, 2022, 11(7): 2030-2039. |
[6] | 裴英伟, 张红, 王星辉. 可充电锌离子电池电解质的研究进展[J]. 储能科学与技术, 2022, 11(7): 2075-2082. |
[7] | 霍思达, 薛文东, 李新丽, 李勇. 基于CiteSpace知识图谱的锂电池复合电解质可视化分析[J]. 储能科学与技术, 2022, 11(7): 2103-2113. |
[8] | 申晓宇, 岑官骏, 乔荣涵, 朱璟, 季洪祥, 田孟羽, 金周, 闫勇, 武怿达, 詹元杰, 俞海龙, 贲留斌, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.4.1—2022.5.31)[J]. 储能科学与技术, 2022, 11(7): 2007-2022. |
[9] | 周伟东, 黄秋, 谢晓新, 陈科君, 李薇, 邱介山. 固态锂电池聚合物电解质研究进展[J]. 储能科学与技术, 2022, 11(6): 1788-1805. |
[10] | 李一涛, 沈凯尔, 庞全全. 有机物辅助的硫化物电解质基固态电池[J]. 储能科学与技术, 2022, 11(6): 1902-1918. |
[11] | 周伟, 符冬菊, 刘伟峰, 陈建军, 胡照, 曾燮榕. 废旧磷酸铁锂动力电池回收利用研究进展[J]. 储能科学与技术, 2022, 11(6): 1854-1864. |
[12] | 张浩然, 车海英, 郭凯强, 申展, 张云龙, 陈航达, 周煌, 廖建平, 刘海梅, 马紫峰. Sn掺杂NaNi1/3Fe1/3Mn1/3-x Sn x O2 正极材料制备及其电化学性能[J]. 储能科学与技术, 2022, 11(6): 1874-1882. |
[13] | 张言, 王海, 刘朝孟, 张德柳, 王佳东, 李建中, 高宣雯, 骆文彬. 锂离子电池富镍三元正极材料NCM的研究进展[J]. 储能科学与技术, 2022, 11(6): 1693-1705. |
[14] | 乔荣涵, 岑官骏, 申晓宇, 田孟羽, 季洪祥, 田丰, 起文斌, 金周, 武怿达, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.2.1—2022.3.31)[J]. 储能科学与技术, 2022, 11(5): 1289-1304. |
[15] | 汪红辉, 吴泽钦, 储德韧. 轻度过放模式下钛酸锂电池性能及热安全性[J]. 储能科学与技术, 2022, 11(5): 1305-1313. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||