储能科学与技术 ›› 2022, Vol. 11 ›› Issue (11): 3623-3630.doi: 10.19799/j.cnki.2095-4239.2022.0336

• 储能测试与评价 • 上一篇    下一篇

基于SOM+SVM的退役锂离子电池分选

王鲁(), 王峰(), 徐竞, 赵延鹏, 李玮, 王艳艳, 王应彪   

  1. 西南林业大学机械与交通学院,云南 昆明 650224
  • 收稿日期:2022-06-17 修回日期:2022-07-05 出版日期:2022-11-05 发布日期:2022-11-09
  • 通讯作者: 王峰 E-mail:1105331851@qq.com;wangf@swfu.edu.cn
  • 作者简介:王鲁(1996—),男,硕士研究生,研究方向为电力电子与电力传动,E-mail:1105331851@qq.com
  • 基金资助:
    国家自然科学基金(52165038);云南省教育厅科学研究基金(2020J0417);西南林业大学科研启动基金(01102-111928)

Sorting of retired lithium-ion batteries based on SOM+SVM

Lu WANG(), Feng WANG(), Jing XU, Yanpeng ZHAO, Wei LI, Yanyan WANG, Yingbiao WANG   

  1. School of Machinery and Transportation, Southwest Forestry University, Kunming 650224, Yunnan, China
  • Received:2022-06-17 Revised:2022-07-05 Online:2022-11-05 Published:2022-11-09
  • Contact: Feng WANG E-mail:1105331851@qq.com;wangf@swfu.edu.cn

摘要:

针对退役动力电池分选方法匮乏的问题,提出一种基于SOM(自组织特征映射网络)+SVM(支持向量机)的退役锂离子电池分选方法。对退役电池进行电池测试,通过电池测试系统记录电池的电流、电压、温度和放电容量的变化,进行电池PNGV(新一代汽车合作伙伴)模型参数辨识,并依据电池容量、等压降时间等特征参数与模型参数对电池进行多参数聚类与分选归类。将分选归类结果中的退役电池单体进行并联重组,进行一致性实验,并对实验结果进行比较分析。实验结果表明:该方法下的退役电池参数在经过重组循环运算后,极化内阻、剩余容量、等压降时间、温度转换速率一致性变化程度较小,欧姆内阻离散度明显减小,在退役电池分选工作中具有实际意义。

关键词: SOM神经网络, 支持向量机, PNGV模型, 退役电池, 电池分选

Abstract:

A retired lithium-ion battery-sorting approach based on SOM (self-organizing feature mapping network)+SVM (support vector machine) is proposed to address the shortage of sorting methods for retired power batteries. A battery test was performed on retired batteries. Battery test systems were used to record the changes in battery current, voltage, temperature, and discharge capacity. The battery PNGV (new generation automotive partner) model parameters were identified. Furthermore, the batteries were grouped and sorted according to the characteristics and model parameters, including battery capacity and constant voltage drop time. The retired battery cells in the sorting and classification results were reorganized in parallel, the consistency experiment was performed, and the experimental results were compared and analyzed. The results revealed that the consistency of polarization internal resistance, residual capacity, constant pressure drop time, and temperature conversion rate changed slightly after the recombination cycle operation of the retired battery parameters under this method, and the dispersion of internal ohmic resistance decreased significantly, which is of practical significance in the sorting of retired batteries.

Key words: SOM, SVM, PNGV model, retired battery, battery sorting

中图分类号: