储能科学与技术 ›› 2022, Vol. 11 ›› Issue (11): 3631-3640.doi: 10.19799/j.cnki.2095-4239.2022.0234

• 储能测试与评价 • 上一篇    下一篇

一种基于少量温度传感器的超级电容模组温度监测方法

韦莉(), 黄雪林, 张婉婷, 白欣桐()   

  1. 同济大学电子与信息工程学院,上海 201800
  • 收稿日期:2022-05-05 修回日期:2022-06-08 出版日期:2022-11-05 发布日期:2022-11-09
  • 通讯作者: 白欣桐 E-mail:weili@tongji.edu.cn;2110249@tongji.edu.cn
  • 作者简介:韦莉(1982—),女,副教授,主要研究方向规模化储能系统、电动汽车关键电力电子部件,E-mail:weili@tongji.edu.cn
  • 基金资助:
    国家自然科学基金项目(51777141)

A temperature monitoring method of supercapacitor module based on a small number of temperature sensors

Li WEI(), Xuelin HUANG, Wanting ZHANG, Xintong BAI()   

  1. School of Electronics and Information Engineering, Tongji University, Shanghai 201800, China
  • Received:2022-05-05 Revised:2022-06-08 Online:2022-11-05 Published:2022-11-09
  • Contact: Xintong BAI E-mail:weili@tongji.edu.cn;2110249@tongji.edu.cn

摘要:

超级电容器服役性能及老化过程与温度密切相关,温度过高会引起热失控从而影响超级电容运行安全,因此监测超级电容系统中每只单体温度尤为重要,而传统的传感器监测方案存在成本高、不易安装等问题。本工作以商用超级电容模组为研究对象,提出了一种基于少量单体温度预估模组内剩余单体温度的方法,可以减少传感器的使用。通过研究不同冷却风速下、多段恒流充放电时模组内各单体的温度数据,发现单体温度间具有强相关性。建立基于BP神经网络的模组温度预估模型,通过对比不同单体组合作为输入,并分别移除电流、电压、风速等因素后的预训练效果,确定了最佳的模型架构。通过对比不同算法在同一数据集上的预测效果,选定了Levenberg-Marquardt作为模型的训练算法。模型可实现通过3只单体温度预估剩余9只单体温度,测试数据集上的总体平均绝对误差为0.06 ℃,最大绝对误差在0.30 ℃以内,满足储能系统对温度监测精度的要求。该方法所需测试条件简单,同时能够降低温度传感器购置成本,为超级电容热管理系统的温度监测提供了一种新的方法。

关键词: 超级电容模组, 温度预估, 神经网络, 温度监测

Abstract:

Supercapacitors' service performance and the aging process are closely related to temperature. Excessive temperature will cause thermal runaway and affect the operation safety of supercapacitors. Therefore, it is imperative to monitor the temperature of each unit in the supercapacitor system. However, the conventional sensor monitoring scheme has high costs and complex installation issues. With a commercial supercapacitor module as the research object, this paper suggests a method to estimate the temperature of residual cells in the module according to the temperature of a small number of cells, which can reduce the use of sensors. It is found that there is a strong correlation between cell temperatures by analyzing the temperature data of each cell in the module under various cooling wind speeds with multi-stage constant current charging and discharging. A module temperature estimation model according to BP neural network is established. The best model architecture is determined by comparing the pre-training effects of different cell combinations as input and removing current, voltage, wind speed, and other factors. By comparing the estimation impacts of various algorithms on the same data set, Levenberg Marquardt is chosen as the training algorithm of the model. The model can estimate the temperature of the remaining 9 cells through the temperature of 3 cells. The test data set's average absolute error is 0.06 ℃, and the maximum absolute error is within 0.3 ℃, which meets the energy storage system's requirements for temperature monitoring precision. The suggested method requires simple test conditions and can reduce the purchase cost of temperature sensors, which provides a new method for temperature monitoring of supercapacitor thermal management systems.

Key words: supercapacitor module, temperature estimation, neural network, temperature monitoring

中图分类号: