1 |
曹广华, 高佶, 高洁, 等. 超级电容的原理及应用[J]. 自动化技术与应用, 2016, 35(5): 131-135.
|
|
CAO G H, GAO J, GAO J, et al. Principle and application of super capacitor[J]. Techniques of Automation and Applications, 2016, 35(5): 131-135.
|
2 |
韩冬林, 徐琤颖, 陈愚. 基于超级电容的后备式UPS系统设计[J]. 电源技术, 2016, 40(10): 2036-2039.
|
|
HAN D L, XU Z Y, CHEN Y. Design of backup UPS system based on super capacitors[J]. Chinese Journal of Power Sources, 2016, 40(10): 2036-2039.
|
3 |
王民华, 李凤霞. 混合储能平抑微电网功率波动控制策略研究[J]. 电力电容器与无功补偿, 2020, 41(4): 215-220.
|
|
WANG M H, LI F X. Study on control strategy of hybrid energy storage used in stabilization power fluctuation of microgrid[J]. Power Capacitor & Reactive Power Compensation, 2020, 41(4): 215-220.
|
4 |
华黎, 杨恩东, 梁全顺, 等. 车用超级电容器动力系统在世博公交的应用及推广[C]. 中国智能交通协会, 2011: 9.
|
|
HUA L, YANG E D, LIANG Q S, et al. Application and promotion of automotive supercapacitor power system in expo bus[C]. China Intelligent Transportation Association, 2011: 9.
|
5 |
芮学宝, 朱刚阳. 电容储能型再生电能吸收装置在地铁系统中的应用[J]. 电气化铁道, 2020, 31(S1): 195-198.
|
|
RUI X B, ZHU G Y. Application of capacitive energy storage regenerative energy absorption device in subway system[J]. Electric Railway, 2020, 31(S1): 195-198.
|
6 |
陈朝晖, 张伟先, 黄钰强. 48V超级电容模组的研究[J]. 技术与市场, 2015, 22(5): 68-69.
|
|
CHEN C H, ZHANG W X, HUANG Y Q. Research on 48V supercapacitor module[J]. Technology and Market, 2015, 22(5): 68-69.
|
7 |
陈书礼, 韩金磊, 荣常如, 等. 温度和电压对超级电容器单体内阻影响的研究[J]. 汽车技术, 2016(3): 40-44.
|
|
CHEN S L, HAN J L, RONG C R, et al. Influence of temperature and voltage on internal resistance of supercapacitor[J]. Automobile Technology, 2016(3): 40-44.
|
8 |
KÖTZ R, HAHN M, GALLAY R. Temperature behavior and impedance fundamentals of supercapacitors[J]. Journal of Power Sources, 2006, 154(2): 550-555.
|
9 |
ZHOU Y T, WANG Y N, WANG K, et al. Hybrid genetic algorithm method for efficient and robust evaluation of remaining useful life of supercapacitors[J]. Applied Energy, 2020, 260: doi: 10.1016/j.apenergy.2019.114169.
|
10 |
FLETCHER S I, SILLARS F B, CARTER R C, et al. The effects of temperature on the performance of electrochemical double layer capacitors[J]. Journal of Power Sources, 2010, 195(21): 7484-7488.
|
11 |
顾帅, 韦莉, 张逸成, 等. 超级电容器不一致性研究现状及展望[J]. 中国电机工程学报, 2015, 35(11): 2862-2869.
|
|
GU S, WEI L, ZHANG Y C, et al. Review of nonuniformity research and analysis on supercapacitor[J]. Proceedings of the CSEE, 2015, 35(11): 2862-2869.
|
12 |
Q31/0115000918C005—2018, 船用超级电容器系统[S]. 上海: 上海奥威科技开发有限公司, 2018.
|
|
Q31/0115000918C005—2018, Marine supercapacitor system[S]. Shanghai: Shanghai Aowei Technology Development Co., LTD, 2018.
|
13 |
VOICU I, LOUAHLIA H, GUALOUS H, et al. Thermal management and forced air-cooling of supercapacitors stack[J]. Applied Thermal Engineering, 2015, 85: 89-99.
|
14 |
FRIVALDSKY M, CUNTALA J, SPANIK P. Simple and accurate thermal simulation model of supercapacitor suitable for development of module solutions[J]. International Journal of Thermal Sciences, 2014, 84: 34-47.
|
15 |
戴朝华, 傅雪婷, 杜云, 等. 不同空间结构的有轨电车超级电容热行为[J]. 西南交通大学学报, 2020, 55(5): 920-927, 900.
|
|
DAI C H, FU X T, DU Y, et al. Supercapacitor thermal behavior of trams with different spatial structures[J]. Journal of Southwest Jiaotong University, 2020, 55(5): 920-927, 900.
|
16 |
郭文强, 董瑶, 李清华, 等. PSO-BP神经网络在开关柜设备温度预测中的应用[J]. 陕西科技大学学报, 2020, 38(1): 149-153.
|
|
GUO W Q, DONG Y, LI Q H, et al. Application of PSO-BP neural network in temperature prediction for switchgear equipment[J]. Journal of Shaanxi University of Science & Technology, 2020, 38(1): 149-153.
|
17 |
赵明珠, 王丹, 方杰, 等. 基于LSTM神经网络的地铁车站温度预测[J]. 北京交通大学学报, 2020, 44(4): 94-101.
|
|
ZHAO M Z, WANG D, FANG J, et al. Prediction of subway station temperature based on LSTM neural network[J]. Journal of Beijing Jiaotong University, 2020, 44(4): 94-101.
|
18 |
贾永会, 杜建桥, 汪潮洋, 等. 基于BP神经网络的燃煤锅炉温度分布预测[J]. 热能动力工程, 2020, 35(7): 130-138.
|
|
JIA Y H, DU J Q, WANG C Y, et al. Prediction model of temperature distribution in combustion zone of coal-fired boiler based on BP neural network[J]. Journal of Engineering for Thermal Energy and Power, 2020, 35(7): 130-138.
|
19 |
FANG K Z, MU D B, CHEN S, et al. A prediction model based on artificial neural network for surface temperature simulation of nickel-metal hydride battery during charging[J]. Journal of Power Sources, 2012, 208: 378-382.
|
20 |
LIU K L, LI K, DENG J. A novel hybrid data-driven method for li-ion battery internal temperature estimation[C]//2016 UKACC 11th International Conference on Control (CONTROL). Belfast, UK. IEEE : 1-6.
|
21 |
HASAN M M, POURMOUSAVI S A, JAHANBANI ARDAKANI A, et al. A data-driven approach to estimate battery cell temperature using a nonlinear autoregressive exogenous neural network model[J]. Journal of Energy Storage, 2020, 32: doi:10.1016/j.est.2020.101879.
|
22 |
KIM T J, YOUN B D, KIM H J. Online-applicable temperature prediction model for EV battery pack thermal management[C]. ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. 2013.
|
23 |
BO Z, LI H W, YANG H C, et al. Combinatorial atomistic-to-AI prediction and experimental validation of heating effects in 350 F supercapacitor modules[J]. International Journal of Heat and Mass Transfer, 2021, 171: doi:10.1016/j.ijheatmasstransfer.2021.121075.
|
24 |
赵崇文. 人工神经网络综述[J]. 山西电子技术, 2020(3): 94-96.
|
|
ZHAO C W. A survey on artificial neural networks[J]. Shanxi Electronic Technology, 2020(3): 94-96.
|
25 |
RUMELHART D E, HINTON G E, WILLIAMS R J. Learning representations by back-propagating errors[J]. Nature, 1986, 323(6088): 533-536.
|
26 |
HORNIK K, STINCHCOMBE M, WHITE H. Multilayer feedforward networks are universal approximators[J]. Neural Networks, 1989, 2(5): 359-366.
|
27 |
SUTSKEVER I, MARTENS J, DAHL G, HINTON G. On the importance of initialization and momentum in deep learning[C]. 30th International Conference on Machine Learning, ICML 2013, 1139-1147.
|
28 |
YADAV S, SHUKLA S. Analysis of k-fold cross-validation over hold-out validation on colossal datasets for quality classification[C]//2016 IEEE 6th International Conference on Advanced Computing. Bhimavaram, India. IEEE : 78-83.
|