储能科学与技术 ›› 2023, Vol. 12 ›› Issue (1): 165-171.doi: 10.19799/j.cnki.2095-4239.2022.0485

• 储能系统与工程 • 上一篇    下一篇

新型蓄热体结构蓄热过程分析

胡自锋1(), 徐耀祖2, 段振云1(), 商向东1, 徐景久2   

  1. 1.沈阳工业大学机械工程学院,辽宁 沈阳 110870
    2.沈阳华维工程技术有限公司,辽宁 沈阳 110180
  • 收稿日期:2022-08-26 修回日期:2022-09-06 出版日期:2023-01-05 发布日期:2023-02-08
  • 通讯作者: 段振云 E-mail:huzifeng1023@163.com;1032901978@qq.com
  • 作者简介:胡自锋(1997—),男,硕士研究生,研究方向为能源/环保装备设计理论与智能检测技术,E-mail:huzifeng1023@163.com

Analysis of the heat storage process of a new heat storage body structure

Zifeng HU1(), Yaozu XU2, Zhenyun DUAN1(), Xiangdong SHANG1, Jingjiu XU2   

  1. 1.School of Mechanical Engineering, Shenyang University of Technology, Shenyang 110870, Liaoning, China
    2.Shenyang Huawei Engineering Technology Co. , Ltd. , Shenyang 110180, Liaoning, China
  • Received:2022-08-26 Revised:2022-09-06 Online:2023-01-05 Published:2023-02-08
  • Contact: Zhenyun DUAN E-mail:huzifeng1023@163.com;1032901978@qq.com

摘要:

为提高工程实际应用中固体蓄热器蓄热体的蓄热能力,以碱性耐火材料MgO砖作为蓄热介质,设计一种新型蓄热体结构,基于物理参数非定值的热分析方法,对新型蓄热体结构的蓄热性能及温度分布情况进行分析。结果表明:目标蓄热时间下,传统蓄热体温度分布梯度较大,温度分布以蓄热体中心点为核心呈面性递减,整体温差值为227.0 K,新型蓄热体温度分布以横向轴线呈线性递减,整体温差值为107.8 K,较传统蓄热体整体温差值减小119.2 K,监测点温度偏差率降低5.7%;目标蓄热时间下,传统蓄热体网格节点温度在设计蓄热温度873 K温度段占比仅为8.7%,而在高温段占比达到70.1%,整体温度分布不均,新型蓄热体网格节点温度在设计蓄热温度873 K温度段占比达60.4%,未形成明显高温段,整体温度分布更优;目标蓄热温度下,新型蓄热体结构的实际蓄热容量达到理论蓄热容量的96%,较传统蓄热体提升16%,同时相同蓄热容量下体积仅有传统蓄热体的83%,能有效提高蓄热体蓄热能力,相应降低蓄热成本,有利于市场推广。

关键词: 蓄热, 热分析, 数值模拟, 热容量, 固体蓄热器

Abstract:

A unique heat accumulator structure was created using standard refractory MgO brick as a heat storage medium to increase the heat storage capacity of solid heat accumulators in real-world engineering applications. Using thermal analysis method of non-fixed physical characteristics, the heat storage capability and temperature dispersion of such a new kind of heat accumulator structure are examined. The findings show that the temperature distribution of the conventional heat storage body possesses a substantial gradient under the desired heat storage duration, demonstrating a planar reduction in the core of the heat storage body as the center, with the overall temperature differential of 227.0 K. The temperature distribution of the new heat storage body linearly decreases along the transverse axis, and the overall temperature differential value is 107.8 K, which is 119.2 K lower than that of the conventional heat storage body. The temperature deviation rate of the monitoring points is decreased by 5.7%. Under the goal heat storage time, the grid node temperature of conventional heat storage accounts for only 8.7% at the design heat storage temperature of 873 K. In contrast, the proportion in the high-temperature area rises to 70.1%, resulting in the unequal distribution of overall temperature. The grid node temperature of the additional heat storage accounts for 60.4% at the intended heat storage temperature of 873 K. Because no substantial high-temperature segment has been formed, the overall temperature distribution is better. The actual heat storage capacity of the novel heat storage structure reaches 96% of the theoretical heat storage capacity at the target heat storage temperature, which is 16% higher than that of the conventional heat storage system. At the same heat storage capacity, the volume of the new heat storage system is only 83% of the conventional heat storage system, which can effectively increase the heat storage capacity of the heat storage system, can lower the cost of heat storage accordingly, and is conducive to market promotion.

Key words: heat storage, thermal analysis, numerical simulation, specific heat, solid thermal storage

中图分类号: