1 |
RAIJMAKERS L H J, DANILOV D L, EICHEL R A, et al. A review on various temperature-indication methods for Li-ion batteries[J]. Applied Energy, 2019, 240: 918-945.
|
2 |
FENG X N, ZHENG S Q, REN D S, et al. Investigating the thermal runaway mechanisms of lithium-ion batteries based on thermal analysis database[J]. Applied Energy, 2019, 246: 53-64.
|
3 |
MALI V, SAXENA R, KUMAR K, et al. Review on battery thermal management systems for energy-efficient electric vehicles[J]. Renewable and Sustainable Energy Reviews, 2021, 151: doi: 10.1016/j.rser.2021.111611.
|
4 |
LU Z, YU X L, WEI L C, et al. Parametric study of forced air cooling strategy for lithium-ion battery pack with staggered arrangement[J]. Applied Thermal Engineering, 2018, 136: 28-40.
|
5 |
YANG T R, YANG N X, ZHANG X W, et al. Investigation of the thermal performance of axial-flow air cooling for the lithium-ion battery pack[J]. International Journal of Thermal Sciences, 2016, 108: 132-144.
|
6 |
YANG W, ZHOU F, ZHOU H B, et al. Thermal performance of cylindrical lithium-ion battery thermal management system integrated with mini-channel liquid cooling and air cooling[J]. Applied Thermal Engineering, 2020, 175: doi: 10.1016/j.applthermaleng.2020.115331.
|
7 |
WU W X, WANG S F, WU W, et al. A critical review of battery thermal performance and liquid based battery thermal management[J]. Energy Conversion and Management, 2019, 182: 262-281.
|
8 |
ZHANG Z Q, WEI K. Experimental and numerical study of a passive thermal management system using flat heat pipes for lithium-ion batteries[J]. Applied Thermal Engineering, 2020, 166: doi: 10.1016/j.applthermaleng.2019.114660.
|
9 |
WANG Q, JIANG B, XUE Q F, et al. Experimental investigation on EV battery cooling and heating by heat pipes[J]. Applied Thermal Engineering, 2015, 88: 54-60.
|
10 |
JAGUEMONT J, OMAR N, VAN DEN BOSSCHE P, et al. Phase-change materials (PCM) for automotive applications: A review[J]. Applied Thermal Engineering, 2018, 132: 308-320.
|
11 |
VERMA A, SHASHIDHARA S, RAKSHIT D. A comparative study on battery thermal management using phase change material (PCM)[J]. Thermal Science and Engineering Progress, 2019, 11: 74-83.
|
12 |
MALIK M, DINCER I, ROSEN M A. Review on use of phase change materials in battery thermal management for electric and hybrid electric vehicles[J]. International Journal of Energy Research, 2016, 40(8): 1011-1031.
|
13 |
SUN Z Q, FAN R J, YAN F, et al. Thermal management of the lithium-ion battery by the composite PCM-Fin structures[J]. International Journal of Heat and Mass Transfer, 2019, 145: doi: 10.1016/j.ijheatmasstransfer.2019.118739.
|
14 |
LI W Q, QU Z G, HE Y L, et al. Experimental study of a passive thermal management system for high-powered lithium ion batteries using porous metal foam saturated with phase change materials[J]. Journal of Power Sources, 2014, 255: 9-15.
|
15 |
BAIS A R, SUBHEDAR D G, PANCHAL S. Critical thickness of nano-enhanced RT-42 paraffin based battery thermal management system for electric vehicles: A numerical study[J]. Journal of Energy Storage, 2022, 52: doi: 10.1016/j.est.2022.104757.
|
16 |
ZHANG C B, LI J, CHEN Y P. Improving the energy discharging performance of a latent heat storage (LHS) unit using fractal-tree-shaped fins[J]. Applied Energy, 2020, 259: doi: 10.1016/j.apenergy.2019.114102.
|
17 |
AL-MUDHAFAR A H N, NOWAKOWSKI A F, NICOLLEAU F C G A. Enhancing the thermal performance of PCM in a shell and tube latent heat energy storage system by utilizing innovative fins[J]. Energy Reports, 2021, 7: 120-126.
|
18 |
XU P, YU B M, YUN M J, et al. Heat conduction in fractal tree-like branched networks[J]. International Journal of Heat and Mass Transfer, 2006, 49(19/20): 3746-3751.
|
19 |
AMBEKAR S, RATH P, BHATTACHARYA A. A novel PCM and TCE based thermal management of battery module[J]. Thermal Science and Engineering Progress, 2022, 29: doi: 10.1016/j.tsep.2022.101196.
|
20 |
TIAN M W, SMAISIM G F, YAN S R, et al. Economic cost and efficiency analysis of a lithium-ion battery pack with the circular and elliptical cavities filled with phase change materials[J]. Journal of Energy Storage, 2022, 52: doi: 10.1016/j.est.2022.104794.
|
21 |
TALELE V, THORAT P, GOKHALE Y P, et al. Phase change material based passive battery thermal management system to predict delay effect[J]. Journal of Energy Storage, 2021, 44: doi: 10.1016/j.est.2021.103482.
|
22 |
CHOUDHARI V G, DHOBLE A S, PANCHAL S. Numerical analysis of different fin structures in phase change material module for battery thermal management system and its optimization[J]. International Journal of Heat and Mass Transfer, 2020, 163: doi: 10.1016/j.ijheatmasstransfer.2020.120434.
|
23 |
ALIPANAH M, LI X L. Numerical studies of lithium-ion battery thermal management systems using phase change materials and metal foams[J]. International Journal of Heat and Mass Transfer, 2016, 102: 1159-1168.
|
24 |
FADL M, EAMES P. A numerical investigation into the heat transfer and melting process of lauric acid in a rectangular enclosure with three values of wall heat flux[J]. Energy Procedia, 2019, 158: 4502-4509.
|
25 |
WENG J W, OUYANG D X, YANG X Q, et al. Optimization of the internal fin in a phase-change-material module for battery thermal management[J]. Applied Thermal Engineering, 2020, 167: doi: 10.1016/j.applthermaleng.2019.114698.
|