储能科学与技术 ›› 2023, Vol. 12 ›› Issue (2): 431-458.doi: 10.19799/j.cnki.2095-4239.2022.0605

• 储能材料与器件 • 上一篇    下一篇

基于相变材料的储热器及其传热强化研究进展

戴宇成1(), 王增鹏2, 刘凯豹1, 赵佳腾1(), 刘昌会1()   

  1. 1.中国矿业大学低碳能源与动力工程学院,江苏 徐州 221116
    2.西安交通大学能源与;动力工程学院,陕西 西安 710049
  • 收稿日期:2022-10-19 修回日期:2022-11-26 出版日期:2023-02-05 发布日期:2023-02-24
  • 通讯作者: 赵佳腾,刘昌会 E-mail:TS21130008A31@cumt.edu.cn;zhaojiateng@cumt.edu.cn;liuch915@cumt.edu.cn
  • 作者简介:戴宇成(1998—),男,硕士研究生,研究方向为热管和相变储热,E-mail: TS21130008A31@cumt.edu.cn
    刘昌会,博士,副教授,研究方向为相变储能及储热强化等,E-mail: liuch915@cumt.edu.cn
  • 基金资助:
    国家自然科学基金项目(51906252);江苏省自然科学基金项目(BK20190628);中央高校基本科研业务费专项资金(2021QN1065)

Research progress of heat storage and heat transfer enhancement based on phase change materials

Yucheng DAI1(), Zengpeng WANG2, Kaibao LIU1, Jiateng ZHAO1(), Changhui LIU1()   

  1. 1.School of Low Carbon Energy and Power Engineering, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
    2.School of Energy and Environmental Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
  • Received:2022-10-19 Revised:2022-11-26 Online:2023-02-05 Published:2023-02-24
  • Contact: Jiateng ZHAO, Changhui LIU E-mail:TS21130008A31@cumt.edu.cn;zhaojiateng@cumt.edu.cn;liuch915@cumt.edu.cn

摘要:

相变储热是具有广阔应用前景的储能技术之一,具有储热密度大、相变温度稳定等优点,但相变材料的热导率低制约了相变储热技术的发展。提升相变材料的热导率和储热器件的传热速率是有效的解决途径。针对相变材料热导率强化研究进展有大量综述,而对于储热器件层面的传热强化的总结较少,本文回顾了近10年国内外在储热器及其传热强化研究方面的进展。为适应不同应用需求,不同类型的相变储热器应运而生,根据储热器的工作模式和结构可以分为管壳式、填充床式、板式、热管式4类,本文系统地介绍了4类储热器的工作原理、优缺点以及强化传热研究,主要比较了结构优化后的储热器与传统储热器的传热速率和储/放热性能,结果指出对储热器的内部结构进行改进及拓展外部结构等方法能有效增加储热容量和储/放热速率,对于提高系统相变储热能力具有积极作用,分析表明后续的研究应该明晰储热器内部多相耦合传热机制,增强储热器对动态工况适应能力,拓宽应用范围。

关键词: 相变储热, 储热器件, 结构优化, 传热强化

Abstract:

Phase change thermal energy storage is one of the energy storage technologies with a wide range of applications due to its advantages of high heat storage density and stable phase transition temperature, but the low coefficient of thermal conductivity of phase change materials (PCM) has hampered the further development of this technology. It is an efficient method of increasing the thermal conductivity of PCM as well as the heat transfer rate of the thermal storage device. There have been a large number of review articles published on the research progress of thermal conductivity enhancement of PCM, but there have been fewer summaries for heat transfer enhancement of the heat storage device. This paper reviews the research progress of heat storage devices and their heat transfer enhancement over the last decade. To meet various application needs, different types of phase change heat storage devices emerges. Based on its working mode and structure, it is classified into four types: shell and tube type, filled bed type, plate type, and heat pipe type. The working principle, advantages and disadvantages of the four types of heat storage devices, and the progress of heat transfer enhancement research are systematically summarized, majorly comparing the heat transfer rate and charge/discharge performance of conventional heat storage devices and those after structural optimization. The results show that improving the internal structure of the heat storage and expanding the external structure can effectively increase the heat storage capacity and charge/discharge rate, which improves system capacity. The finding demonstrate that future research should focus on clarifying the multi-phase coupling heat transfer mechanism inside the heat storage device, improving the heat storage device's adaptability to dynamic working conditions, and broadening the application range.

Key words: phase change thermal energy storage, thermal energy storage device, structure optimization, heat transfer enhancement

中图分类号: