储能科学与技术 ›› 2023, Vol. 12 ›› Issue (2): 398-430.doi: 10.19799/j.cnki.2095-4239.2022.0521

• 储能材料与器件 • 上一篇    下一篇

高温相变储热材料制备与应用研究进展

刘伟1(), 李振明1(), 刘铭扬1, 杨岑玉1, 梅超2, 李迎2   

  1. 1.中国电力科学研究院有限公司储能与电工新技术研究所,北京 100192
    2.国网福建省电力有限公司厦门供电公司,福建 厦门 361004
  • 收稿日期:2022-09-13 修回日期:2022-10-21 出版日期:2023-02-05 发布日期:2023-02-24
  • 通讯作者: 李振明 E-mail:liuwei3@epri.sgcc.com.cn;lizhenming@epri.sgcc.com.cn
  • 作者简介:刘伟(1974—),男,高级工程师,研究方向为相变储能技术、储能材料,E-mail:liuwei3@epri.sgcc.com.cn
  • 基金资助:
    国家电网有限公司科技项目“面向工业领域电能替代的蒸汽型高温相变储热关键技术研究与示范”(5419-202021250A-0-0-00)

Review of high-temperature phase change heat storage material preparation and applications

Wei LIU1(), Zhenming LI1(), Mingyang LIU1, Cenyu YANG1, Chao MEI2, Ying LI2   

  1. 1.Energy Storage and Novel Technology of Electrical Engineering Department, China Electric Power Research Institute Limited Company, Beijing 100192, China
    2.State Grid Xiamen Electric Power Supply Company, Xiamen 361004, Fujian, China
  • Received:2022-09-13 Revised:2022-10-21 Online:2023-02-05 Published:2023-02-24
  • Contact: Zhenming LI E-mail:liuwei3@epri.sgcc.com.cn;lizhenming@epri.sgcc.com.cn

摘要:

面向工业领域蒸汽供热需求,大力发展高温相变储热技术,有效调节电网峰谷负荷,有力促进电能替代,助力实现“碳达峰、碳中和”目标。本文通过对近期相关文献的回顾,首先介绍了相变材料优选原则与方法,其次介绍了高温相变材料的分类,着重阐述了盐基高温复合相变材料的最新研究动态,包括金属泡沫/无机盐、石墨泡沫/无机盐、膨胀石墨/无机盐、多孔陶瓷/无机盐复合相变材料和黏土矿物/无机盐相变复合材料,指出高温复合相变材料可以改善无机盐低热导率和热稳定性、腐蚀密封材料等问题。然后总结了高温相变材料的制备方法,指出浸渗法、溶胶-凝胶法、冷压烧结法在实际应用中各有利弊,相比之下,冷压烧结法是制备盐基复合材料最具成本效益的方法。最后重点介绍了高温复合相变材料在工业过程余热回收、电力调峰、太阳能热发电三个领域的应用现状,为研究不同场景下蒸汽型高温相变储热系统容量配置和经济评估方法提供了理论基础。

关键词: 高温储热, 相变材料, 制备方法, 储热装置

Abstract:

Faced with the demand for steam heating in the industrial field, we will vigorously develop high-temperature phase change heat storage technology, effectively adjust the peak and valley loads of power grids, effectively promote the replacement of electric energy, and help achieve the goal of "carbon peak and carbon neutrality." This article comprises a literature review of the principles and methods of phase change material optimization. High-temperature phase change materials are also classified. The latest research trends of high-temperature composite phase change materials are emphatically described, including metal foam/inorganic salt, graphite foam/inorganic salt, expanded graphite/inorganic salt, porous ceramic/inorganic salt, and porous clay mineral/inorganic salt composite phase change materials. Notably, high-temperature composite phase change materials can improve the low thermal conductivity and stability of inorganic salts and corrosion of sealing materials. Next, the preparation methods of high-temperature phase change materials are summarized; the advantages and disadvantages of the infiltration method, sol-gel method, and cold pressing sintering method in practical application are highlighted. In comparison, the cold pressing sintering method is the most cost-effective for preparing salt matrix composites. Finally, the application statuses of high-temperature composite phase change materials in industrial waste heat recovery, power peak regulation, and solar thermal power generation are discussed, providing a basis for studying the capacity allocation and economic evaluation methods of high-temperature phase change heat storage systems of the steam type under different scenarios. This review has a certain reference value for the development of high-temperature phase change heat storage technology.

Key words: high temperature heat storage, phase change material, preparation method, thermal storage device

中图分类号: