储能科学与技术 ›› 2023, Vol. 12 ›› Issue (2): 398-430.doi: 10.19799/j.cnki.2095-4239.2022.0521
刘伟1(), 李振明1(), 刘铭扬1, 杨岑玉1, 梅超2, 李迎2
收稿日期:
2022-09-13
修回日期:
2022-10-21
出版日期:
2023-02-05
发布日期:
2023-02-24
通讯作者:
李振明
E-mail:liuwei3@epri.sgcc.com.cn;lizhenming@epri.sgcc.com.cn
作者简介:
刘伟(1974—),男,高级工程师,研究方向为相变储能技术、储能材料,E-mail:liuwei3@epri.sgcc.com.cn;
基金资助:
Wei LIU1(), Zhenming LI1(), Mingyang LIU1, Cenyu YANG1, Chao MEI2, Ying LI2
Received:
2022-09-13
Revised:
2022-10-21
Online:
2023-02-05
Published:
2023-02-24
Contact:
Zhenming LI
E-mail:liuwei3@epri.sgcc.com.cn;lizhenming@epri.sgcc.com.cn
摘要:
面向工业领域蒸汽供热需求,大力发展高温相变储热技术,有效调节电网峰谷负荷,有力促进电能替代,助力实现“碳达峰、碳中和”目标。本文通过对近期相关文献的回顾,首先介绍了相变材料优选原则与方法,其次介绍了高温相变材料的分类,着重阐述了盐基高温复合相变材料的最新研究动态,包括金属泡沫/无机盐、石墨泡沫/无机盐、膨胀石墨/无机盐、多孔陶瓷/无机盐复合相变材料和黏土矿物/无机盐相变复合材料,指出高温复合相变材料可以改善无机盐低热导率和热稳定性、腐蚀密封材料等问题。然后总结了高温相变材料的制备方法,指出浸渗法、溶胶-凝胶法、冷压烧结法在实际应用中各有利弊,相比之下,冷压烧结法是制备盐基复合材料最具成本效益的方法。最后重点介绍了高温复合相变材料在工业过程余热回收、电力调峰、太阳能热发电三个领域的应用现状,为研究不同场景下蒸汽型高温相变储热系统容量配置和经济评估方法提供了理论基础。
中图分类号:
刘伟, 李振明, 刘铭扬, 杨岑玉, 梅超, 李迎. 高温相变储热材料制备与应用研究进展[J]. 储能科学与技术, 2023, 12(2): 398-430.
Wei LIU, Zhenming LI, Mingyang LIU, Cenyu YANG, Chao MEI, Ying LI. Review of high-temperature phase change heat storage material preparation and applications[J]. Energy Storage Science and Technology, 2023, 12(2): 398-430.
表1
部分高温相变材料无机盐的热物理性质[6-7, 17-21]"
化合物 | 熔化温度/℃ | 熔化热/(kJ/kg) | 导热系数/[W/(m·K)] | 比热容/[kJ/(kg·K)] |
---|---|---|---|---|
NaNO3 | 306 | 182 | 0.5/—(液固) | —/1.1(液固) |
KNO3 | 334 | 266 | —/0.5 | —/0.953(液固) |
NaOH | 323 | 170 | 0.92/—(液固) | 2.09/2.01(液固) |
KOH | 380 | 149.7 | —/0.5(液固) | — |
Na2CO3 | 854 | 275.7 | — | —/2(液固) |
K2CO3 | 897 | 235.8 | — | —/2(液固) |
96KNO3-4KCl | 320 | 150 | —/0.5(液固) | —/1.21(液固) |
60MgCl2-20.4KCl-19.6NaCl | 380 | 400 | — | —/0.96(液固) |
52MgCl2-48NaCl | 450 | 430 | 0.95/—(液固) | 1/0.92(液固) |
64MgCl2-36KCl | 470 | 388 | 0.83/—(液固) | 0.96/0.84(液固) |
48MgCl2-27CaCl2-25KCl | 487 | 342 | 0.88/—(液固) | 0.92/0.8(液固) |
53BaCl2-28KCl-19NaCl | 542 | 221 | 0.86/—(液固) | 0.8/0.63(液固) |
44Li2CO3-56Na2CO3 | 496 | 370 | 2.09/—(液固) | 2.09/1.8(液固) |
39MgCl2-61NaCl | 435 | 351 | 0.81/—(液固) | 0.96/0.8(液固) |
22Li2CO3-16Na2CO3-62K2CO3 | 580 | 288 | 1.95/—(液固) | 2.09/1.80(液固) |
67CaCl2-33NaCl | 500 | 281 | 1.02/—(液固) | 1/0.84(液固) |
33LiF-67KF | 442 | 618 | 3.98/—(液固) | 1.63/1.34(液固) |
12NaF-59KF-29LiF | 454 | 590 | 4.50/—(液固) | 1.55/1.34(液固) |
20Li2CO3-60Na2CO3-20K2CO3 | 550 | 283 | 1.83/—(液固) | 1.88/1.59(液固) |
54KCl-46ZnCl2 | 432 | 218 | 0.83/—(液固) | 0.88/0.67(液固) |
28KCl-19NaCl-53BaCl2 | 542 | 221 | 0.86/—(液固) | 0.80/0.63(液固) |
48NaCl-52MgCl2 | 450 | 430 | 0.95/—(液固) | 1.00/0.92(液固) |
47BaCl2-24KCl-29CaCl | 551 | 219 | 0.95/—(液固) | 0.84/0.67(液固) |
36KCl-64MgCl2 | 470 | 388 | 0.83/—(液固) | 0.96/0.84(液固) |
33NaCl-67CaCl2 | 500 | 281 | 1.02/—(液固) | 1.00/0.84(液固) |
37MgCl2-63SrCl2 | 535 | 239 | 1.05/—(液固) | 0.80/0.67(液固) |
47Li2CO3-53K2CO3 | 488 | 342 | 1.99/—(液固) | 1.34/1.03(液固) |
17NaF-21KF-62K2CO3 | 520 | 274 | 1.50/—(液固) | 1.38/1.17(液固) |
28Li2CO3-72K2CO3 | 498 | 263 | 1.85/—(液固) | 1.80/1.46(液固) |
51K2CO3-49Na2CO3 | 710 | 163 | 1.73/—(液固) | 1.56/1.67(液固) |
24KCl-47BaCl2-29CaCl2 | 551 | 219 | 0.95/—(液固) | 0.84/0.67(液固) |
32Li2CO3-35K2CO3-Na2CO3 | 397 | 276 | 2.02/—(液固) | 1.63/1.67(液固) |
61KCl-39MgCl2 | 435 | 351 | 0.81/—(液固) | 0.96/0.8(液固) |
40KCl-23KF-37K2CO3 | 528 | 283 | 1.19/—(液固) | 1.26/1(液固) |
35Li2CO3-65K2CO3 | 505 | 344 | 1.89/—(液固) | 1.76/1.34(液固) |
表3
部分高温相变材料金属合金的热物理性质[17]"
金属及金属合金 | 熔化温度/℃ | 熔化热/(kJ/kg) |
---|---|---|
Zn | 419 | 112 |
Al | 661 | 388 |
96Zn-4Al | 381 | 138 |
86.4Al-9.4Si-4.2Sb | 471 | 471 |
59Al-33Mg-6Zn | 443 | 310 |
65.35Al-34.65Mg | 497 | 285 |
60.8Al-33.2Cu-6Mg | 506 | 365 |
64.6Al-28Cu-5.2Si-2.2Mg | 507 | 374 |
68.5Al-26.5Cu-5Si | 525 | 364 |
Mg | 648 | 365 |
46.3Mg-53.7Zn | 341 | 185 |
86Si-12Al | 576 | 560 |
56Si-44Mg | 946 | 757 |
49Zn-45Cu-6Mg | 703 | 176 |
49.1Cu-46.3Al-4.6Si | 571 | 406 |
83.14Al-11.7Si-5.16Mg | 555 | 485 |
64.1Al-28Mg-5.2Si-2.2Cu | 507 | 374 |
66.92Al-33.08Cu | 548 | 372 |
1 | 程珊珊. 基于电、煤锅炉联合供暖的弃风消纳策略研究[D]. 沈阳: 沈阳工业大学, 2020. |
CHENG S S. Research on wind power accommodation strategy of combined heating of electric and coal boilers[D]. Shenyang: Shenyang University of Technology, 2020. | |
2 | JACOB R, BELUSKO M, INÉS FERNÁNDEZ A, et al. Embodied energy and cost of high temperature thermal energy storage systems for use with concentrated solar power plants[J]. Applied Energy, 2016, 180: 586-597. |
3 | YANG T Y, KING W P, MILJKOVIC N. Phase change material-based thermal energy storage[J]. Cell Reports Physical Science, 2021, 2(8): doi: 10.1016/j.xcrp.2021.100540. |
4 | HE F, SONG G P, HE X D, et al. Structural and phase change characteristics of inorganic microencapsulated core/shell Al-Si/Al2O3 micro-particles during thermal cycling[J]. Ceramics International, 2015, 41(9): 10689-10696. |
5 | ZHANG G C, LI J Q, CHEN Y F, et al. Encapsulation of copper-based phase change materials for high temperature thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2014, 128: 131-137. |
6 | WEI G S, WANG G, XU C, et al. Selection principles and thermophysical properties of high temperature phase change materials for thermal energy storage: A review[J]. Renewable and Sustainable Energy Reviews, 2018, 81: 1771-1786. |
7 | KENISARIN M M. High-temperature phase change materials for thermal energy storage[J]. Renewable and Sustainable Energy Reviews, 2010, 14(3): 955-970. |
8 | KHARE S, DELL'AMICO M, KNIGHT C, et al. Selection of materials for high temperature latent heat energy storage[J]. Solar Energy Materials and Solar Cells, 2012, 107: 20-27. |
9 | LIU M, FERNÁNDEZ A I, SEGARRA M. Materials for phase change material at high temperature[M]//High Temperature Thermal Storage Systems Using Phase Change Materials. Amsterdam: Elsevier, 2018: 195-230. |
10 | ANSYS. The 21th anniversary celebration of materials selection software, Cambridge[EB/OL]. (2007-08-15)[2013-05-29].http://www.newmaker.com/. |
11 | MISHRA R K, VERMA K, MISHRA V, et al. A review on carbon-based phase change materials for thermal energy storage[J]. Journal of Energy Storage, 2022, 50: doi: 10.1016/j.est.2022.104166. |
12 | LIU M, OMARAA E S, QI J, et al. Review and characterisation of high-temperature phase change material candidates between 500 C and 700 ℃[J]. Renewable and Sustainable Energy Reviews, 2021, 150: doi: 10.1016/j.rser.2021.111528. |
13 | ZHONG L M, ZHANG X W, LUAN Y, et al. Preparation and thermal properties of porous heterogeneous composite phase change materials based on molten salts/expanded graphite[J]. Solar Energy, 2014, 107: 63-73. |
14 | TIAN H Q, WANG W L, DING J, et al. Thermal conductivities and characteristics of ternary eutectic chloride/expanded graphite thermal energy storage composites[J]. Applied Energy, 2015, 148: 87-92. |
15 | BAUER T, DRTE L, ULRIKE K, et al. Sodium nitrate for high temperature latent heat storage[C]//The 11 th International Conference on Thermal Energy Storage-Effstock. DLR, 2009. |
16 | HEIDENREICH G R, PAREKH M B. Thermal energy storage for organic Rankine cycle solar dynamic space power systems[J]. Proceedings of the Intersociety Energy Conversion Engineering Conference, 1986: 791-797. |
17 | CÁRDENAS B, LEÓN N. High temperature latent heat thermal energy storage: Phase change materials, design considerations and performance enhancement techniques[J]. Renewable and Sustainable Energy Reviews, 2013, 27: 724-737. |
18 | MARIANOWSKI L G, MARU H C. Latent heat thermal energy storage systems above 450 C[C]//12th Intersociety Energy Conversion Engineering Conference, 1977, 1: 555-566. |
19 | DULLES J F, Maru H C. Molten-salt thermal-energy storage systems[R]. CHO (Chicago Operations Office, Argonne, IL (United States)), 1977:1-129. |
20 | VERDIEV N N, ARBUKHANOVA P A, ISKENDEROV E G. NaF-NaBr-Na2MoO4 and KF-KCl-KBr ternary systems[J]. Russian Journal of Inorganic Chemistry, 2009, 54(1): 128-133. |
21 | PETRI R, ONG E, MARTIN J. High temperature composite thermal energy storage (TES) systems for industrial applications[R]. Institute of Gas Technology, Chicago, IL (USA); Oak Ridge National Lab. TN (USA), 1986 |
22 | MISRA A K. Fluoride salts and container materials for thermal energy storage applications in the temperature range 973-1400 K[C]//22nd Intersociety Energy Conversion Engineering Conference. August 10-14, 1987, Philadelphia, Pennsylvania. Reston, Virginia: AIAA, 1987: doi: 10.2514/6.1987-9226. |
23 | BIRCHENALL C E, TELKES M. Thermal storage in metals[J]. Sharing the Sun: Solar Technology in the Seventies, 1976, 8(8): 138-154. |
24 | RIECHMAN A F. Heat storage in eutectic alloys[J]. Metallurgical Transactions A, 1980, 11(8): 1415-1420. |
25 | ACHARD P. Heat Storage at 450 deg C in Aluminum-Magnesium Alloys[J]. Rational Utilization of Energy, 1981: 39-46. |
26 | WANG Z Y, WANG H, LI X B, et al. Aluminum and silicon based phase change materials for high capacity thermal energy storage[J]. Applied Thermal Engineering, 2015, 89: 204-208. |
27 | HUANG Z G, MEI S H, WU G Z. Prospect of metal phase change thermal energy storage technologies[J]. New Energy 1999(4): 1-5. |
28 | SUN J Q, ZHANG R Y, LIU Z P, et al. Thermal reliability test of Al-34%Mg-6%Zn alloy as latent heat storage material and corrosion of metal with respect to thermal cycling[J]. Energy Conversion and Management, 2007, 48(2): 619-624. |
29 | RODRÍGUEZ-ASEGUINOLAZA J, BLANCO-RODRÍGUEZ P, RISUEÑO E, et al. Thermodynamic study of the eutectic Mg49-Zn51 alloy used for thermal energy storage[J]. Journal of Thermal Analysis and Calorimetry, 2014, 117(1): 93-99. |
30 | BLANCO-RODRÍGUEZ P, RODRÍGUEZ-ASEGUINOLAZA J, RISUEÑO E, et al. Thermophysical characterization of Mg-51%Zn eutectic metal alloy: A phase change material for thermal energy storage in direct steam generation applications[J]. Energy, 2014, 72: 414-420. |
31 | CHEN H X, LI J J, LI Y Y, et al. Microstructure and phase transition kinetics of Mg-Ni-Zn alloy phase change thermal storage materials[J]. Journal of Alloys and Compounds, 2020, 829: doi: 10.1016/j.jallcom.2020.154574. |
32 | FANG D, CHENG X M, LI Y Y, et al. Microstructure and thermal characteristics of Mg-Sn alloys as phase change materials for thermal energy storage[J]. RSC Advances, 2016, 6(98): 96327-96333. |
33 | FANG D, SUN Z, LI Y Y, et al. Preparation, microstructure and thermal properties of MgBi alloys as phase change materials for thermal energy storage[J]. Applied Thermal Engineering, 2016, 92: 187-193. |
34 | SUN Z, LI L F, CHENG X M, et al. Thermal properties and the prospects of thermal energy storage of Mg-25%Cu-15%Zn eutectic alloy as phase change material[J]. Materials (Basel, Switzerland), 2021, 14(12): doi: 10.3390/ma14123296. |
35 | RISUEÑO E, DOPPIU S, RODRÍGUEZ-ASEGUINOLAZA J, et al. Experimental investigation of Mg-Zn-Al metal alloys for latent heat storage application[J]. Journal of Alloys and Compounds, 2016, 685: 724-732. |
36 | SABOL J C, MISIOLEK W Z, OZTEKIN A, et al. Characterization of intermediate phases formed between solid nickel and liquid zinc during use as an encapsulated phase change material in solar thermal energy storage systems[J]. Metallography, Microstructure, and Analysis, 2012, 1(5): 208-216. |
37 | ADINBERG R, ZVEGILSKY D, EPSTEIN M. Heat transfer efficient thermal energy storage for steam generation[J]. Energy Conversion and Management, 2010, 51(1): 9-15. |
38 | TAO Y B, HE Y L. A review of phase change material and performance enhancement method for latent heat storage system[J]. Renewable and Sustainable Energy Reviews, 2018, 93: 245-259. |
39 | ZHAO C Y, WU Z G. Heat transfer enhancement of high temperature thermal energy storage using metal foams and expanded graphite[J]. Solar Energy Materials and Solar Cells, 2011, 95(2): 636-643. |
40 | 祁先进. 金属基相变复合蓄热材料的实验研究[D]. 昆明: 昆明理工大学, 2005. |
QI X J. Experimental study on composite heat storage material with metal and molten[D]. Kunming: Kunming University of Science and Technology, 2005. | |
41 | ZHANG P, XIAO X, MENG Z N, et al. Heat transfer characteristics of a molten-salt thermal energy storage unit with and without heat transfer enhancement[J]. Applied Energy, 2015, 137: 758-772. |
42 | SINGH D, KIM T, ZHAO W H, et al. Development of graphite foam infiltrated with MgCl2 for a latent heat based thermal energy storage (LHTES) system[J]. Renewable Energy, 2016, 94: 660-667. |
43 | LAFDI K, MESALHY O, ELGAFY A. Graphite foams infiltrated with phase change materials as alternative materials for space and terrestrial thermal energy storage applications[J]. Carbon, 2008, 46(1): 159-168. |
44 | ZHAO W H, FRANCE D M, YU W H, et al. Phase change material with graphite foam for applications in high-temperature latent heat storage systems of concentrated solar power plants[J]. Renewable Energy, 2014, 69: 134-146. |
45 | PY X, OLIVES R, MAURAN S. Paraffin/porous-graphite-matrix composite as a high and constant power thermal storage material[J]. International Journal of Heat and Mass Transfer, 2001, 44(14): 2727-2737. |
46 | REN Y X, XU C, YUAN M D, et al. Ca(NO3)2-NaNO3/expanded graphite composite as a novel shape-stable phase change material for mid- to high-temperature thermal energy storage[J]. Energy Conversion and Management, 2018, 163: 50-58. |
47 | TIAN H Q, WANG W L, DING J, et al. Preparation of binary eutectic chloride/expanded graphite as high-temperature thermal energy storage materials[J]. Solar Energy Materials and Solar Cells, 2016, 149: 187-194. |
48 | LIU J W, WANG Q H, LING Z Y, et al. A novel process for preparing molten salt/expanded graphite composite phase change blocks with good uniformity and small volume expansion[J]. Solar Energy Materials and Solar Cells, 2017, 169: 280-286. |
49 | ZHAO Y J, WANG R Z, WANG L W, et al. Development of highly conductive KNO3/NaNO3 composite for TES (thermal energy storage)[J]. Energy, 2014, 70: 272-277. |
50 | XU T, LI Y T, CHEN J Y, et al. Preparation and thermal energy storage properties of LiNO3-KCl-NaNO3/expanded graphite composite phase change material[J]. Solar Energy Materials and Solar Cells, 2017, 169: 215-221. |
51 | PETRI R, ONG E, MARIANOWSKI L. High temperature composite thermal storage systems for industrial applications[R]. Institute of Gas Technology, Chicago, IL (USA); Oak Ridge National Lab. TN (USA), 1985. |
52 | GOKON N, NAKANO D, INUTA S, et al. High-temperature carbonate/MgO composite materials as thermal storage media for double-walled solar reformer tubes[J]. Solar Energy, 2008, 82(12): 1145-1153. |
53 | YE F, GE Z W, DING Y L, et al. Multi-walled carbon nanotubes added to Na2CO3/MgO composites for thermal energy storage[J]. Particuology, 2014, 15: 56-60. |
54 | GE Z W, YE F, CAO H, et al. Carbonate-salt-based composite materials for medium-and high-temperature thermal energy storage[J]. Particuology, 2014, 15: 77-81. |
55 | JIANG Z, JIANG F, LI C, et al. A form stable composite phase change material for thermal energy storage applications over 700 ℃[J]. Applied Sciences, 2019, 9(5): doi: 10.3390/app9050814. |
56 | SANG L X, LI F, XU Y W. Form-stable ternary carbonates/MgO composite material for high temperature thermal energy storage[J]. Solar Energy, 2019, 180: 1-7. |
57 | JIANG Y F, SUN Y P, LI S A. Performance of novel Na2SO4-NaCl-ceramic composites as high temperature phase change materials for solar power plants (Part II)[J]. Solar Energy Materials and Solar Cells, 2019, 194: 285-294. |
58 | JIANG Y F, SUN Y P, JACOB R D, et al. Novel Na2SO4-NaCl-ceramic composites as high temperature phase change materials for solar thermal power plants (Part I)[J]. Solar Energy Materials and Solar Cells, 2018, 178: 74-83. |
59 | ZHOU W B, LI R G, ZHOU W, et al. Fabrication of Al2O3-NaCl composite heat storage materials by one-step synthesis method[J]. Journal of Wuhan University of Technology-Mater Sci Ed, 2016, 31(5): 950-954. |
60 | QIAN T T, LI J H, MIN X, et al. Radial-like mesoporous silica sphere: A promising new candidate of supporting material for storage of low-, middle-, and high-temperature heat[J]. Energy, 2016, 112: 1074-1083. |
61 | NOTTER W, LECHNER T, GROß U, et al. Thermophysical properties of the composite ceramic-salt system (SiO2/Na2SO4)[J]. Thermochimica Acta, 1993, 218: 455-463. |
62 | 李爱菊, 王毅. 无机盐/陶瓷基复合蓄热材料高温稳定性的研究[J]. 材料导报, 2011, 25(12): 78-81. |
LI A J, WANG Y. Study on the high temperature stability of salt/ceramic composite heat storage material[J]. Materials Review, 2011, 25(12): 78-81. | |
63 | 吴建锋, 李剑, 徐晓虹, 等. NaCl/SiC泡沫陶瓷高温复合相变蓄热材料[J]. 武汉理工大学学报, 2009, 31(17): 70-73. |
WU J F, LI J, XU X H, et al. Preparation of molten salts/ceramic-foam composites by melt infiltration method as energy storagy materials at high temperature[J]. Journal of Wuhan University of Technology, 2009, 31(17): 70-73. | |
64 | LI Y, GUO B, HUANG G F, et al. Characterization and thermal performance of nitrate mixture/SiC ceramic honeycomb composite phase change materials for thermal energy storage[J]. Applied Thermal Engineering, 2015, 81: 193-197. |
65 | XU G Z, LENG G H, YANG C Y, et al. Sodium nitrate - Diatomite composite materials for thermal energy storage[J]. Solar Energy, 2017, 146: 494-502. |
66 | DENG Y, LI J H, NIAN HONGEN. Expanded vermiculite: A promising natural encapsulation material of LiNO3, NaNO3, and KNO3 phase change materials for medium-temperature thermal energy storage[J]. Advanced Engineering Materials, 2018, 20(8): doi: 10.1002/adem.201800135. |
67 | LENG G H, QIAO G, JIANG Z, et al. Micro encapsulated & form-stable phase change materials for high temperature thermal energy storage[J]. Applied Energy, 2018, 217: 212-220. |
68 | QIAN T T, LI J H, MIN X, et al. Diatomite: A promising natural candidate as carrier material for low, middle and high temperature phase change material[J]. Energy Conversion and Management, 2015, 98: 34-45. |
69 | QIN Y, LENG G H, YU X, et al. Sodium sulfate-diatomite composite materials for high temperature thermal energy storage[J]. Powder Technology, 2015, 282: 37-42. |
70 | DENG Y, LI J H, QIAN T T, et al. Preparation and characterization of KNO3/diatomite shape-stabilized composite phase change material for high temperature thermal energy storage[J]. Journal of Materials Science & Technology, 2017, 33(2): 198-203. |
71 | LIU R P, ZHANG F, SU W M, et al. Impregnation of porous mullite with Na2SO4 phase change material for thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2015, 134: 268-274. |
72 | LV P Z, LIU C Z, RAO Z H. Review on clay mineral-based form-stable phase change materials: Preparation, characterization and applications[J]. Renewable and Sustainable Energy Reviews, 2017, 68: 707-726. |
73 | LI R G, ZHU J Q, ZHOU W B, et al. Thermal compatibility of Sodium Nitrate/Expanded Perlite composite phase change materials[J]. Applied Thermal Engineering, 2016, 103: 452-458. |
74 | LI R G, ZHU J Q, ZHOU W B, et al. Thermal properties of sodium nitrate-expanded vermiculite form-stable composite phase change materials[J]. Materials & Design, 2016, 104: 190-196. |
75 | 顾华志, 韩藏娟, 张美杰, 等. 高温相变蓄热材料的封装研究及应用展望[J]. 耐火材料, 2021, 55(6): 528-532, 538. |
GU H Z, HAN C J, ZHANG M J, et al. Package research and application of high-temperature phase change heat storage materials[J]. Refractories, 2021, 55(6): 528-532, 538. | |
76 | JIANG F, ZHANG L L, SHE X H, et al. Skeleton materials for shape-stabilization of high temperature salts based phase change materials: A critical review[J]. Renewable and Sustainable Energy Reviews, 2020, 119: doi: 10.1016/j.rser.2019.109539. |
77 | PINCEMIN S, OLIVES R, PY X, et al. Highly conductive composites made of phase change materials and graphite for thermal storage[J]. Solar Energy Materials and Solar Cells, 2008, 92(6): 603-613. |
78 | SINGH D, YU W H, ZHAO W H, et al. Development and prototype testing of MgCl2/graphite foam latent heat thermal energy storage system[J]. Solar Energy, 2018, 159: 270-282. |
79 | WU Z G, ZHAO C Y. Experimental investigations of porous materials in high temperature thermal energy storage systems[J]. Solar Energy, 2011, 85(7): 1371-1380. |
80 | 何镐东, 杨林, 曹建新. 黄磷渣与硫酸钠-氯化钠制备高温复合相变储能材料[J/OL]. 无机盐工业. [2022-07-24]. https://doi.org/10.19964/j.issn.1006-4990.2022-0140. |
HE H D, YANG L, CAO J X. Preparation of high temperature composite phase change energy storage materials by yellow phosphorus slag and Na2SO4-NaCl[J/OL]. Inorganic Chemicals Industry. [2022-07-24]. https://doi.org/10.19964/j.issn.1006-4990. 2022-0140. | |
81 | 刘汉昌, 朱桂花, 吕硕, 等. 相变介质组成对粉煤灰基高温定形复合相变材料蓄热性能的影响[J]. 硅酸盐通报, 2022, 41(2): 597-606. |
LIU H C, ZHU G H, LYU S, et al. Influence of phase change medium composition on heat storage performance of fly ash-based high-temperature shaped composite phase change materials[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(2): 597-606. | |
82 | 韩金鹏, 朱桂花, 吕硕, 等. 相变介质粒径对粉煤灰基高温定形复合相变材料蓄热性能的影响[J]. 煤炭转化, 2019, 42(1): 78-86. |
HAN J P, ZHU G H, LYU S, et al. Effects of particle size of phase change medium on thermal storage performance of fly ash-based high temperature formstable composite phase change material[J]. Coal Conversion, 2019, 42(1): 78-86. | |
83 | 焦勇. Al-Si/Al2O3高温复合相变蓄热材料的制备与性能研究[D]. 西安: 西安建筑科技大学, 2012. |
JIAO Y. Study on preparation and properties of Al-Si/Al2O3 high temperature phase change heat storage materials[D]. Xi'an: Xi'an University of Architecture and Technology, 2012. | |
84 | 王建宏. 粉煤灰基高温复合相变蓄热材料的制备与性能研究[D]. 西安: 西安建筑科技大学, 2013. |
WANG J H. Study on preparation and properties of high temperature fly ash base phase change heat storage composite materials[D]. Xi'an: Xi'an University of Architecture and Technology, 2013. | |
85 | HAN C J, GU H Z, ZHANG M J, et al. Preparation and characterization of a heat storage ceramic with Al-12 wt% Si as the phase change material[J]. Ceramics International, 2020, 46(18): 28042-28052. |
86 | GUO Q, WANG T. Preparation and characterization of sodium sulfate/silica composite as a shape-stabilized phase change material by Sol-gel method[J]. Chinese Journal of Chemical Engineering, 2014, 22(3): 360-364. |
87 | LAI C C, LIN S M, CHU Y D, et al. Tunable endothermic plateau for enhancing thermal energy storage obtained using binary metal alloy particles[J]. Nano Energy, 2016, 25: 218-224. |
88 | ORTEGA-FERNÁNDEZ I, RODRÍGUEZ-ASEGUINOLAZA J. Thermal energy storage for waste heat recovery in the steelworks: The case study of the REslag project[J]. Applied Energy, 2019, 237: 708-719. |
89 | YU Q H, JIANG Z, CONG L, et al. A novel low-temperature fabrication approach of composite phase change materials for high temperature thermal energy storage[J]. Applied Energy, 2019, 237: 367-377. |
90 | DAL MAGRO F, MENEGHETTI A, NARDIN G, et al. Enhancing energy recovery in the steel industry: Matching continuous charge with off-gas variability smoothing[J]. Energy Conversion and Management, 2015, 104: 78-89. |
91 | DAL MAGRO F, BENASCIUTTI D, NARDIN G. Thermal stress analysis of PCM containers for temperature smoothing of waste gas[J]. Applied Thermal Engineering, 2016, 106: 1010-1022. |
92 | DAL MAGRO F, SAVINO S, MENEGHETTI A, et al. Coupling waste heat extraction by phase change materials with superheated steam generation in the steel industry[J]. Energy, 2017, 137: 1107-1118. |
93 | ANDERSSON O, RYDELL L, ALGOTSSON T. Efficient usage of waste heat by applying a seasonal energy storage (BTES) at ITT Water & Wastewater AB, Emmaboda, Sweden[J]. Proceedings of Effstock, 2009: 14-17. |
94 | KOIDE H, KURNIAWAN A, TAKAHASHI T, et al. Performance analysis of packed bed latent heat storage system for high-temperature thermal energy storage using pellets composed of micro-encapsulated phase change material[J]. Energy, 2022, 238: doi: 10.1016/j.energy.2021.121746. |
95 | WANG X, LIU J, ZHANG Y P, et al. Experimental research on a kind of novel high temperature phase change storage heater[J]. Energy Conversion and Management, 2006, 47(15/16): 2211-2222. |
96 | 李传, 司艳阳, 冷光辉, 等. 高温复合相变材料储热电暖器的储热性能[J]. 储能科学与技术, 2017, 6(4): 739-747. |
LI C, SI Y Y, LENG G H, et al. Charging behavior of an electrical storage heater using a high temperature composite phase change material[J]. Energy Storage Science and Technology, 2017, 6(4): 739-747. | |
97 | ZHAO B, LI C, JIN Y, et al. Heat transfer performance of thermal energy storage components containing composite phase change materials[J]. IET Renewable Power Generation, 2016, 10(10): 1515-1522. |
98 | JIANG Y F, LIU M, SUN Y P. Review on the development of high temperature phase change material composites for solar thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2019, 203: doi: 10.1016/j.solmat.2019.110164. |
99 | ZANGANEH G, COMMERFORD M, HASELBACHER A, et al. Stabilization of the outflow temperature of a packed-bed thermal energy storage by combining rocks with phase change materials[J]. Applied Thermal Engineering, 2014, 70(1): 316-320. |
100 | MATHUR A, KASETTY R, OXLEY J, et al. Using encapsulated phase change salts for concentrated solar power plant[J]. Energy Procedia, 2014, 49: 908-915. |
101 | STEINMANN W D, TAMME R. Latent heat storage for solar steam systems[J]. Journal of Solar Energy Engineering, 2008, 130(1): doi: 10.1115/1.2804624. |
102 | ZHANG H L, BAEYENS J, DEGRÈVE J, et al. Latent heat storage with tubular-encapsulated phase change materials (PCMs)[J]. Energy, 2014, 76: 66-72. |
103 | 陈举飞. 铝基高温相变储热材料的储热性能与实际应用研究[D]. 长沙: 中南大学, 2013. |
CHEN J F. The research on heat storage performance and practical application of aluminum-based high temperature phase change thermal storage material[D]. Changsha: Central South University, 2013. | |
104 | MEHRPOOYA M, GHORBANI B, SADEGHZADEH M. Hybrid solar parabolic dish power plant and high-temperature phase change material energy storage system[J]. International Journal of Energy Research, 2019, 43(10): 5405-5420. |
105 | LI C, LI Q, DING Y L. Investigation on the thermal performance of a high temperature packed bed thermal energy storage system containing carbonate salt based composite phase change materials[J]. Applied Energy, 2019, 247: 374-388. |
106 | 张永学, 王梓熙, 鲁博辉, 等. 雪花型翅片提高相变储热单元储/放热性能[J]. 储能科学与技术, 2022, 11(2): 521-530. |
ZHANG Y X, WANG Z X, LU B H, et al. Enhancement of charging and discharging performance of a latent-heat thermal-energy storage unit using snowflake-shaped fins[J]. Energy Storage Science and Technology, 2022, 11(2): 521-530. | |
107 | 金光, 肖安汝, 刘梦云. 相变储能强化传热技术的研究进展[J]. 储能科学与技术, 2019, 8(6): 1107-1115. |
JIN G, XIAO A R, LIU M Y. Research progress on heat transfer enhancement technology of phase change energy storage[J]. Energy Storage Science and Technology, 2019, 8(6): 1107-1115. | |
108 | 王倩蓉, 李正贵, 卢昌燊, 等. 翅片式相变储能器内赤藻糖醇蓄热性能研究[J]. 热能动力工程, 2021, 36(2): 49-56. |
WANG Q R, LI Z G, LU C S, et al. Study on the thermal storage performance of erythritol in a fin type phase change energy storage device[J]. Journal of Engineering for Thermal Energy and Power, 2021, 36(2): 49-56. | |
109 | 陈东明. 管壳式蓄热器与复合相变材料的强化传热特性研究[D]. 青岛: 青岛科技大学, 2022. |
CHEN D M. Study on the enhanced heat transfer characteristics of shell-and-tube latent heat exchanger and composite phase change material[D]. Qingdao: Qingdao University of Science & Technology, 2022. | |
110 | 李亚强. 热电厂高温相变蓄热装置蓄放热特性的研究[D]. 吉林: 东北电力大学, 2022. |
LI Y Q. Study on heat storage and release characteristics of high temperature phase change heat storage device in heating and power plent[D]. Jilin: Northeast Dianli University, 2022. | |
111 | 陈园园. 新型相变蓄热换热器的设计与传热特性分析[D]. 郑州: 华北水利水电大学, 2020. |
CHEN Y Y. Design and analysis of heat transfer performance of a new phase change heat storage exchanger(PCHSE)[D]. Zhengzhou: North China University of Water Resources and Electric Power, 2020. | |
112 | 侯普民, 茅靳丰, 刘蓉蓉, 等. 环形相变单元的蓄热装置设计及运行特性[J]. 制冷学报, 2018, 39(1): 98-107. |
HOU P M, MAO J F, LIU R R, et al. Design and operating characteristics of heat storage device for annular unit[J]. Journal of Refrigeration, 2018, 39(1): 98-107. | |
113 | SEDDEGH S, WANG X L, HENDERSON A D. A comparative study of thermal behaviour of a horizontal and vertical shell-and-tube energy storage using phase change materials[J]. Applied Thermal Engineering, 2016, 93: 348-358. |
[1] | 沈雪晴, 陈威. 内嵌树形翅片相变层电池热管理性能[J]. 储能科学与技术, 2023, 12(2): 459-467. |
[2] | 董金美, 刘启元, 吴芳, 贾利蕊, 文静, 常成功, 郑卫新, 肖学英. 脂肪酸类二元储能材料的相变特性与配比调节[J]. 储能科学与技术, 2023, 12(2): 349-356. |
[3] | 毛前军, 朱元媛. 新型分叉翅片强化管壳式储能罐储热性能[J]. 储能科学与技术, 2023, 12(1): 69-78. |
[4] | 李沐, 李亚溪, 李传常. 相变储冷技术及其在空调系统中的应用[J]. 储能科学与技术, 2023, 12(1): 180-197. |
[5] | 毛发, 章学来, 华维三. 十二水硫酸铝钾相变蓄热材料研究进展[J]. 储能科学与技术, 2023, 12(1): 120-130. |
[6] | 董乐贤, 郑群, 黄悦, 田志鹏, 刘建平, 王超, 梁波, 雷励斌. 管状固体氧化物燃料电池前沿技术研究进展[J]. 储能科学与技术, 2023, 12(1): 131-138. |
[7] | 王君雷, 张第玲, 王昆, 许东东, 徐祥贵, 姚华, 刘文巍, 黄云. 碳酸盐/高炉矿渣定型复合相变储热材料的制备与性能[J]. 储能科学与技术, 2022, 11(9): 3028-3034. |
[8] | 蒋铖一, 钟尊睿, 吴自德, 彭浩. C8H18~C11H24 混合烷烃体系相变材料的热力学性能[J]. 储能科学与技术, 2022, 11(6): 1957-1967. |
[9] | 周新宇, 栾道成, 胡志华, 凌俊华, 文科林, 刘浪, 阴志铭, 米书恒, 王正云. 含碳二元系相变储热材料储热性能分析选择[J]. 储能科学与技术, 2022, 11(4): 1175-1183. |
[10] | 李钰颖, 魏雯珍, 李琦, 吴玉庭. 可用于低中温热能储存的四元硝酸盐/埃洛石/石墨定型复合材料的制备与研究[J]. 储能科学与技术, 2022, 11(3): 1044-1051. |
[11] | 张永学, 王梓熙, 鲁博辉, 杨胜旗, 赵泓宇. 雪花型翅片提高相变储热单元储/放热性能[J]. 储能科学与技术, 2022, 11(2): 521-530. |
[12] | 郭云琪, 盛楠, 朱春宇, 饶中浩. 基于模板法制备氧化铝纤维及其石蜡复合相变材料热性能[J]. 储能科学与技术, 2022, 11(2): 511-520. |
[13] | 薛洁, 张军, 杜昭, 胡汝坤, 杨肖虎. 新型平底型相变蓄热器蓄热性能的数值模拟[J]. 储能科学与技术, 2022, 11(12): 3855-3861. |
[14] | 毛前军, 陈凯莉. 楔形管壳式蓄热罐的传热性能[J]. 储能科学与技术, 2022, 11(11): 3658-3666. |
[15] | 张琦, 王玉静, 李银雷, 刘重阳. 一种新型蓄冷储热复合相变材料及其应用[J]. 储能科学与技术, 2022, 11(10): 3133-3141. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||