1 |
中共中央国务院关于完整准确全面贯彻新发展理念做好碳达峰碳中和工作的意见[N]. 人民日报, 2021-10-25(1).
|
2 |
DING J, XU Y J, WANG Z Y, et al. Estimating the economics of electrical energy storage based on different policies in China[J]. Journal of Thermal Science, 2020, 29(2): 352-364.
|
3 |
TONG W X, LU Z G, CHEN W J, et al. Solid gravity energy storage: A review[J]. Journal of Energy Storage, 2022, 53: doi: 10.1016/j.est.2022.105226.
|
4 |
BERRADA A, LOUDIYI K, ZORKANI I. Dynamic modeling and design considerations for gravity energy storage[J]. Journal of Cleaner Production, 2017, 159: 336-345.
|
5 |
MORSTYN T, CHILCOTT M, MCCULLOCH M D. Gravity energy storage with suspended weights for abandoned mine shafts[J]. Applied Energy, 2019, 239: 201-206.
|
6 |
HAIDER S, SHAHMORADI-MOGHADAM H, SCHÖNBERGER J O, et al. Algorithm and optimization model for energy storage using vertically stacked blocks[J]. IEEE Access, 2020, 8: doi: 10.1109/ACCESS.2020.3041944.
|
7 |
DAVID HUNT J, ZAKERI B, FALCHETTA G, et al. Mountain Gravity Energy Storage: A new solution for closing the gap between existing short- and long-term storage technologies[J]. Energy, 2020, 190: doi: 10.1016/j.energy.2019.116419.
|
8 |
ARES, Advanced Rail Energy Storage, 2022. (2022-11-19)[2022-11-26] http://s3.amazonaws.com/siteninja/multitenant/assets/21125/files/original/ All_ About _ARES_-_070616.pdf.
|
9 |
Advanced Rail Energy Storage (ARES) [EB/OL]. (2022-09-29)[2022-10-11]https:// aresnorthamerica.com/.
|
10 |
曾蓉. 山体储能技术及其与风电场联合出力的容量配置研究[D]. 长沙: 长沙理工大学, 2016.
|
|
ZENG R. Research on mountain energy technology and its capacity configuration with wind farm[D]. Changsha: Changsha University of Science & Technology, 2016.
|
11 |
刘志刚, 伍也凡, 肖振锋, 等. 基于重力储能的风光储系统多目标容量优化规划[J]. 全球能源互联网, 2021, 4(5): 464-475.
|
|
LIU Z G, WU Y F, XIAO Z F, et al. Multi-objective optimal capacity planning of the wind-photovoltaic-storage system based on gravity energy storage[J]. Journal of Global Energy Interconnection, 2021, 4(5): 464-475.
|
12 |
侯慧, 徐焘, 肖振锋, 等. 基于重力储能的风光储联合发电系统容量规划与评价[J]. 电力系统保护与控制, 2021, 49(17): 74-84.
|
|
HOU H, XU T, XIAO Z F, et al. Optimal capacity planning and evaluation of a wind-photovoltaic-storage hybrid power system based on gravity energy storage[J]. Power System Protection and Control, 2021, 49(17): 74-84.
|
13 |
HOU H, XU T, WU X X, et al. Optimal capacity configuration of the wind-photovoltaic-storage hybrid power system based on gravity energy storage system[J]. Applied Energy, 2020, 271: doi: 10.1016/j.apenergy.2020.115052.
|
14 |
CHEN Y, HOU H, XU T, et al. A new gravity energy storage operation mode to accommodate renewable energy[C]//2019 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). December 1-4, 2019, Macao, China. IEEE, 2020: 1-5.
|
15 |
Moazzami M, Moradi J, Shahinzadeh H, et al. Optimal economic operation of microgrids integrating wind farms and advanced rail energy storage system[J]. International Journal of Renewable Energy Research, 2018, 8(2):1155-1164.
|
16 |
PEITZKE W R, BROWN M B, ERDMAN W L, et al. Utility scale electric energy storage system: US8952563[P]. 2015-02-10.
|
17 |
肖立业, 史黎明, 韦统振, 等. 铁路轨道运载车辆储能系统: CN108437808A[P]. 2018-08-24.
|
|
XIAO L Y, SHI L M, WEI T Z, et al. Railway track carrier vehicle energy storage system: CN108437808A[P]. 2018-08-24.
|
18 |
罗振军, 黄田, 梅江平, 等. 依托山体的重力储能系统: CN103867408A[P]. 2014-06-18.
|
|
LUO Z J, HUANG T, MEI J P, et al. Gravity energy storing system relying on massif: CN103867408A[P]. 2014-06-18.
|
19 |
PEITZKE W R, BROWN M B. Ridgeline cable drive electric energy storage system: US20170288457[P]. 2017-10-05.
|
20 |
柴源. 基于改进鲸鱼算法的风-光-重力储能系统优化配置研究[D]. 西安: 西安理工大学, 2021.
|
|
CHAI Y. Study on optimal configuration of wind power-photovoltaic-gravity energy storage system based on improved whale algorithm[D]. Xi'an: Xi'an University of Technology, 2021.
|
21 |
BOTTENFIELD G, HATIPOGLU K, PANTA Y. Advanced rail energy and storage: Analysis of potential implementations for the state of west Virginia[C]//2018 North American Power Symposium (NAPS). September 9-11, 2018, Fargo, ND, USA. IEEE, 2019: 1-4.
|
22 |
TOUNSI S. Model of wind energy system with reduced simulation time validated by classical equivalent model developed under Simulink[J]. Wind Engineering, 2022, 46(4): 1011-1033.
|
23 |
WADA N, MATSUI Y. Driving force control for a vehicle considering slip ratio limitation[J]. IEEJ Transactions on Electrical and Electronic Engineering, 2019, 14(2): 297-302.
|
24 |
宋舒, 龚建国, 林薇, 等. 纯电动汽车用永磁同步电机空间矢量控制系统建模与仿真[J]. 武汉理工大学学报, 2012, 34(4): 118-122, 140.
|
|
SONG S, GONG J G, LIN W, et al. Modeling and simulation of space vector control system for pure electric vehicle driven by permanent magnet synchronous motor[J]. Journal of Wuhan University of Technology, 2012, 34(4): 118-122, 140.
|
25 |
BOSSOUFI B, IONITA S, CONSTANTINESCU L, et al. Managing voltage drops: A variable speed wind turbine connected to the grid[J]. International Journal of Automation and Control, 2017, 11(1): doi: 10.1504/ijaac.2017.080817.
|
26 |
FU Q. A DSP-controlled permanent magnet synchronous motor control system for hybrid vehicles[J]. International Journal of Antennas and Propagation, 2022, 2022: 1-9.
|
27 |
SETIAWAN I, PRIYADI A, MIYAUCHI H, et al. Adaptive B-spline neural network-based vector control for a grid side converter in wind turbine-DFIG systems[J]. IEEJ Transactions on Electrical and Electronic Engineering, 2015, 10(6): 674-682.
|