1 |
姜竹, 邹博杨, 丛琳, 等. 储热技术研究进展与展望[J]. 储能科学与技术, 2022, 11(9): 2746-2771.
|
|
JIANG Z, ZOU B Y, CONG L, et al. Recent progress and outlook of thermal energy storage technologies[J]. Energy Storage Science and Technology, 2022, 11(9): 2746-2771.
|
2 |
杜保存, 黄丽娟, 雷勇刚, 等. 填充床熔盐蓄热器的动态温度与应力特性[J]. 储能科学与技术, 2022, 11(7): 2141-2150.
|
|
DU B C, HUANG L J, LEI Y G, et al. Dynamic study on the thermal and stress performances of the molten salt packed-bed thermal storage tank[J]. Energy Storage Science and Technology, 2022, 11(7): 2141-2150.
|
3 |
AMIRI L, GHOREISHI-MADISEH S A, SASMITO A P, et al. A porous medium based heat transfer and fluid flow model for thermal energy storage in packed rock beds[J]. IOP Conference Series: Earth and Environmental Science, 2019, 268(1): 012100.
|
4 |
吴玉庭, 任楠, 马重芳. 熔融盐显热蓄热技术的研究与应用进展[J]. 储能科学与技术, 2013, 2(6): 586-592.
|
|
WU Y T, REN N, MA C F. Research and application of molten salts for sensible heat storage[J]. Energy Storage Science and Technology, 2013, 2(6): 586-592.
|
5 |
TAN H B, DING Z, WEN N. Numerical study on the thermodynamic performance of a packed bed cryogenic energy storage system[J]. Applied Thermal Engineering, 2022, 214: doi: 10.1016/j.applthermaleng.2022.118903.
|
6 |
ELSIHY E S, LIAO Z R, XU C, et al. Dynamic characteristics of solid packed-bed thermocline tank using molten-salt as a heat transfer fluid[J]. International Journal of Heat and Mass Transfer, 2021, 165: doi: 10.1016/j.ijheatmasstransfer.2020.120677.
|
7 |
FIERRO M, GUTIERREZ C, JOVICIC V, et al. Hollow spheres as inert packed bed from lean to rich combustion in porous media[J]. International Journal of Heat and Mass Transfer, 2022, 195: doi: 10.1016/j.ijheatmasstransfer.2022.123067.
|
8 |
YANG J, WANG Q W, ZENG M, et al. Computational study of forced convective heat transfer in structured packed beds with spherical or ellipsoidal particles[J]. Chemical Engineering Science, 2010, 65(2): 726-738.
|
9 |
DIXON A G, WALLS G, STANNESS H, et al. Experimental validation of high Reynolds number CFD simulations of heat transfer in a pilot-scale fixed bed tube[J]. Chemical Engineering Journal, 2012, 200/201/202: 344-356.
|
10 |
GUO Z H, SUN Z N, ZHANG N, et al. CFD analysis of fluid flow and particle-to-fluid heat transfer in packed bed with radial layered configuration[J]. Chemical Engineering Science, 2019, 197: 357-370.
|
11 |
李楠, 史俊瑞, 刘洋, 等. 结构化填充床内层流流动特性的研究[J]. 热能动力工程, 2016, 31(10): 79-83, 127.
|
|
LI N, SHI J R, LIU Y, et al. Study of laminar flow characteristics in a structured packed bed[J]. Journal of Engineering for Thermal Energy and Power, 2016, 31(10): 79-83, 127.
|
12 |
SECKENDORFF J, HINRICHSEN O. Review on the structure of random packed-beds[J]. The Canadian Journal of Chemical Engineering, 2021, 99(S1): 703-733.
|
13 |
ALKHALAF A, REFAEY H A, AL-DUROBI N, et al. Influence of contact point treatment on the cross flow mixing in a simple cubic packed bed: CFD simulation and experimental validation[J]. Granular Matter, 2018, 20(2): 22.
|
14 |
CHEN L, LEE W, LEE J. Analysis of the thermal field and heat transfer characteristics of pebble beds packed in a face-centered cubic structure[J]. Applied Thermal Engineering, 2017, 121: 473-483.
|
15 |
杨光, 杨剑, 徐安军. 密排六方颗粒填充床内对流换热的模拟研究[J]. 武汉科技大学学报, 2019, 42(4): 314-320.
|
|
YANG G, YANG J, XU A J. Simulation of convective heat transfer in a packed bed with hexagonal close-packed particles[J]. Journal of Wuhan University of Science and Technology, 2019, 42(4): 314-320.
|
16 |
BALCERZAKM, RUNKA T, ŚNIADECKI Z. Influence of carbon catalysts on the improvement of hydrogen storage properties in a body-centered cubic solid solution alloy[J]. Carbon, 2021, 182: 422-434.
|
17 |
CHEN L S, ZHAO J H, YUAN Y J, et al. Numerical study on the thermal field and heat transfer characteristics of a hexagonal-close-packed pebble bed[J]. Computation, 2022, 10(1): 1.
|
18 |
CHEN L S, LEE J. Effects of inserted sphere on thermal field and heat-transfer characteristics of face-centered-cubic-structured pebble bed[J]. Applied Thermal Engineering, 2020, 172: doi: 10.1016/j.applthermaleng.2020.115151.
|
19 |
YANG J, WANG J, BU S S, et al. Experimental analysis of forced convective heat transfer in novel structured packed beds of particles[J]. Chemical Engineering Science, 2012, 71: 126-137.
|
20 |
WANG J Y, YANG J, SUNDEN B, et al. Hydraulic and heat transfer characteristics in structured packed beds with methane steam reforming reaction for energy storage[J]. International Communications in Heat and Mass Transfer, 2021, 121: doi: 10.1016/j.icheatmasstransfer.2021.105109.
|
21 |
WANG J Y, YANG J, CHEN Z L, et al. Experimental and numerical study on pressure drop and heat transfer performance of grille-sphere composite structured packed bed[J]. Applied Energy, 2018, 227: 719-730.
|
22 |
YIN H B, DING J, JIANG R H, et al. Thermocline characteristics of molten-salt thermal energy storage in porous packed-bed tank[J]. Applied Thermal Engineering, 2017, 110: 855-863.
|
23 |
RONG L W, DONG K J, YU A B. Lattice-Boltzmann computation of hydraulic pore-to-pore conductance in packed beds of uniform spheres[J]. Chemical Engineering Science, 2020, 224: doi:10.1016/j.ces.2020.115798.
|
24 |
DASGUPTA S, ATTA A. Influence of periodic operation on flow distribution in single phase packed beds[J]. Chemical Engineering and Processing-Process Intensification, 2018, 128: 149-161.
|
25 |
ASAKUMA Y, HONDA I, YAMAMOTO T. Numerical approach to predicting the effective thermal conductivity of a packed bed of binary particles[J]. Powder Technology, 2019, 354: 886-892.
|
26 |
陶文铨. 数值传热学[M]. 第2版. 西安: 西安交通大学出版社, 2001.
|
|
TAO W Q. Numerical heat transfer[M]. 2nd ed. Xi'an: Xi'an Jiaotong University Press, 2001.
|
27 |
SUEKANE T, YOKOUCHI Y, HIRAI S. Inertial flow structures in a simple-packed bed of spheres[J]. AIChE Journal, 2003, 49(1): 10-17.
|
28 |
GUNJAL P R, RANADE V V, CHAUDHARI R V. Computational study of a single-phase flow in packed beds of spheres[J]. AIChE Journal, 2005, 51(2): 365-378.
|
29 |
何雅玲, 陶文铨, 王煜, 等. 换热设备综合评价指标的研究进展[C]// 西安: 中国工程热物理学会(传热传质学), 2011.
|
|
HE Y L, TAO W Q, WANG YU, et al. Comprehensive evaluation index and research progress of heat exchanger[C]//Xi'an: Chinese Society of Engineering Thermophysics(Heat and Mass Transfer), 2011.
|