储能科学与技术 ›› 2023, Vol. 12 ›› Issue (9): 2971-2984.doi: 10.19799/j.cnki.2095-4239.2023.0305
收稿日期:
2023-05-04
修回日期:
2023-06-02
出版日期:
2023-09-05
发布日期:
2023-09-16
通讯作者:
李先锋,张长昆
E-mail:zhangyonghui@dicp.ac.cn;lixianfeng@dicp.ac.cn;zhangchk17@dicp.ac.cn
作者简介:
张永辉(1998—),男,硕士研究生,研究方向为水系有机液流电池,E-mail:zhangyonghui@dicp.ac.cn;
基金资助:
Yonghui ZHANG1,2(), Jie FU1, Xianfeng LI2(), Changkun ZHANG2()
Received:
2023-05-04
Revised:
2023-06-02
Online:
2023-09-05
Published:
2023-09-16
Contact:
Xianfeng LI, Changkun ZHANG
E-mail:zhangyonghui@dicp.ac.cn;lixianfeng@dicp.ac.cn;zhangchk17@dicp.ac.cn
摘要:
水系有机液流电池因活性分子结构和性质可调,低成本等潜在的优势近些年来受到研究者的广泛关注。水系有机液流电池面临着活性分子种类繁多,分子的电化学反应机理不明确,且分子的稳定性较差、副反应较多等问题。原位表征技术特别是原位谱学技术对解析水系有机液流电池中有机活性分子的电化学反应过程、机理以及优化电池的内部结构至关重要。本文综述了近些年来水系有机液流电池中原位谱学表征技术的研究进展,着重介绍了原位核磁共振波谱对于分子在电化学反应过程中结构演变的揭示作用、红外光谱原位表征分子与水的分子间氢键作用和电池充放电过程中分子结构变化、原位紫外光谱观测分子信号的周期性变化来确定其分子电化学反应的稳定性以及利用原位电子顺磁共振波谱来确定自由基浓度和反应速率常数等一系列原位光谱应用技术。另外,通过多种原位表征手段的联用,有望实现功能互补,从而更全面深入地了解电池的电化学反应机理、电池运行状态以及活性物质在电极表面的反应过程。
中图分类号:
张永辉, 傅杰, 李先锋, 张长昆. 原位表征技术在水系有机液流电池中的研究进展[J]. 储能科学与技术, 2023, 12(9): 2971-2984.
Yonghui ZHANG, Jie FU, Xianfeng LI, Changkun ZHANG. Research progress on in-situ characterization techniques for aqueous organic flow batteries[J]. Energy Storage Science and Technology, 2023, 12(9): 2971-2984.
1 | Intergovernmental Panel on Climate Change. Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group Ⅲ to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change[C]. Cambridge University Press, doi: 10.1017/9781009157926. |
2 | Achieving net zero emissions with machine learning: The challenge ahead[J]. Nature Machine Intelligence, 2022, 4(8): 661-662. |
3 | LENNON A, LUNARDI M, HALLAM B, et al. The aluminium demand risk of terawatt photovoltaics for net zero emissions by 2050[J]. Nature Sustainability, 2022, 5(4): 357-363. |
4 | THOMPSON H. The geopolitics of fossil fuels and renewables reshape the world[J]. Nature, 2022, 603(7901): 364. |
5 | 陈海生, 李泓, 马文涛, 等. 2021年中国储能技术研究进展[J]. 储能科学与技术, 2022, 11(3): 1052-1076. |
CHEN H S, LI H, MA W T, et al. Research progress of energy storage technology in China in 2021[J]. Energy Storage Science and Technology, 2022, 11(3): 1052-1076. | |
6 | 唐奡, 严川伟. 液流电池模拟仿真研究现状与展望[J]. 储能科学与技术, 2022, 11(9): 2866-2878. |
TANG A, YAN C W. Modelling and simulation of flow batteries: Recent progress and prospects[J]. Energy Storage Science and Technology, 2022, 11(9): 2866-2878. | |
7 | 王瑄, 叶强. 全钒液流电池电堆局部供液不足导致副反应加剧的现象[J]. 储能科学与技术, 2022, 11(5): 1455-1467. |
WANG X, YE Q. The aggravation of side reactions caused by insufficient localized liquid supply in an all-vanadium redox flow battery stack[J]. Energy Storage Science and Technology, 2022, 11(5): 1455-1467. | |
8 | 张华民, 王晓丽. 全钒液流电池技术最新研究进展[J]. 储能科学与技术, 2013, 2(3): 281-288. |
ZHANG H M, WANG X L. Recent progress on vanadium flow battery technologies[J]. Energy Storage Science and Technology, 2013, 2(3): 281-288. | |
9 | LOURENSSEN K, WILLIAMS J, AHMADPOUR F, et al. Vanadium redox flow batteries: A comprehensive review[J]. Journal of Energy Storage, 2019, 25: 100844. |
10 | 王晓丽, 张宇, 张华民. 全钒液流电池储能技术开发与应用进展[J]. 电化学, 2015, 21(5): 433-440. |
WANG X L, ZHANG Y, ZHANG H M. Latest progresses in vanadium flow battery technologies and applications[J]. Journal of Electrochemistry, 2015, 21(5): 433-440. | |
11 | 杨霖霖, 廖文俊, 苏青, 等. 全钒液流电池技术发展现状[J]. 储能科学与技术, 2013, 2(2): 140-145. |
YANG L L, LIAO W J, SU Q, et al. The research & development status of vanadium redox flow battery[J]. Energy Storage Science and Technology, 2013, 2(2): 140-145. | |
12 | DING Y, ZHANG C K, ZHANG L Y, et al. Molecular engineering of organic electroactive materials for redox flow batteries[J]. Chemical Society Reviews, 2018, 47(1): 69-103. |
13 | CAO J Y, TIAN J Y, XU J A, et al. Organic flow batteries: Recent progress and perspectives[J]. Energy & Fuels, 2020, 34(11): 13384-13411. |
14 | AMINI K, KERR E F, GEORGE T Y, et al. An extremely stable, highly soluble monosubstituted anthraquinone for aqueous redox flow batteries[J]. Advanced Functional Materials, 2023, 33(13): 2211338. |
15 | HUANG S Q, ZHANG H, SALLA M, et al. Molecular engineering of dihydroxyanthraquinone-based electrolytes for high-capacity aqueous organic redox flow batteries[J]. Nature Communications, 2022, 13: 4746. |
16 | WU M, BAHARI M, FELL E M, et al. High-performance anthraquinone with potentially low cost for aqueous redox flow batteries[J]. Journal of Materials Chemistry A, 2021, 9(47): 26709-26716. |
17 | WU M, JING Y, WONG A A, et al. Extremely stable anthraquinone negolytes synthesized from common precursors[J]. Chem, 2020, 6(6): 1432-1442. |
18 | HU B, HU M W, LUO J A, et al. A stable, low permeable TEMPO catholyte for aqueous total organic redox flow batteries[J]. Advanced Energy Materials, 2022, 12(8): 2102577. |
19 | LIU Y H, GOULET M A, TONG L C, et al. A long-lifetime all-organic aqueous flow battery utilizing TMAP-TEMPO radical[J]. Chem, 2019, 5(7): 1861-1870. |
20 | ZHOU W B, LIU W J, QIN M, et al. Fundamental properties of TEMPO-based catholytes for aqueous redox flow batteries: Effects of substituent groups and electrolytes on electrochemical properties, solubilities and battery performance[J]. RSC Advances, 2020, 10(37): 21839-21844. |
21 | HUANG M B, HU S Z, YUAN X Z, et al. Five-membered-heterocycle bridged viologen with high voltage and superior stability for flow battery[J]. Advanced Functional Materials, 2022, 32(16): 2111744. |
22 | LI H B, FAN H, HU B, et al. Spatial structure regulation: A rod-shaped viologen enables long lifetime in aqueous redox flow batteries[J]. Angewandte Chemie International Edition, 2021, 60(52): 26971-26977. |
23 | XU J C, PANG S, WANG X Y, et al. Ultrastable aqueous phenazine flow batteries with high capacity operated at elevated temperatures[J]. Joule, 2021, 5(9): 2437-2449. |
24 | ZHANG L Y, QIAN Y M, FENG R Z, et al. Reversible redox chemistry in azobenzene-based organic molecules for high-capacity and long-life nonaqueous redox flow batteries[J]. Nature Communications, 2020, 11: 3843. |
25 | KWON G, LEE S C, HWANG J, et al. Multi-redox molecule for high-energy redox flow batteries[J]. Joule, 2018, 2(9): 1771-1782. |
26 | ZHANG Y H, LI F, LI T Y, et al. Insights into an air-stable methylene blue catholyte towards kW-scale practical aqueous organic flow batteries[J]. Energy & Environmental Science, 2023, 16(1): 231-240. |
27 | WANG W. Reversible ketone hydrogenation and dehydrogenation for aqueous organic redox flow batteries[J]. ECS Meeting Abstracts, 2021, (5): 1821. |
28 | XU D H, ZHANG C J, LI Y D. Molecular engineering the naphthalimide compounds as high-capacity anolyte for nonaqueous redox flow batteries[J]. Chemical Engineering Journal, 2022, 439: 135766. |
29 | DING Y, YU G H. Molecular engineering enables better organic flow batteries[J]. Chem, 2017, 3(6): 917-919. |
30 | PARK M, RYU J, WANG W, et al. Material design and engineering of next-generation flow-battery technologies[J]. Nature Reviews Materials, 2017, 2: 16080. |
31 | WANG H, SAYED S Y, LUBER E J, et al. Redox flow batteries: How to determine electrochemical kinetic parameters[J]. ACS Nano, 2020, 14(3): 2575-2584. |
32 | LI Z Y, XU Y, MA K J, et al. In situ detection of electrochemical reaction by weak measurement[J]. Optics Express, 2021, 29(13): 19292. |
33 | 梁大宇, 包婷婷, 高田慧, 等. 锂离子电池固态电解质界面膜(SEI)的研究进展[J]. 储能科学与技术, 2018, 7(3): 418-423. |
LIANG D Y, BAO T T, GAO T H, et al. Research progress of lithium ion battery solid-electrolyte interface (SEI)[J]. Energy Storage Science and Technology, 2018, 7(3): 418-423. | |
34 | 聂凯会, 耿振, 王其钰, 等. 锂电池研究中的循环伏安实验测量和分析方法[J]. 储能科学与技术, 2018, 7(3): 539-553. |
NIE K H, GENG Z, WANG Q Y, et al. Experimental measurement and analysis methods of cyclic voltammetry for lithium batteries[J]. Energy Storage Science and Technology, 2018, 7(3): 539-553. | |
35 | 凌仕刚, 许洁茹, 李泓. 锂电池研究中的EIS实验测量和分析方法[J]. 储能科学与技术, 2018, 7(4): 732-749. |
LING S G, XU J R, LI H. Experimental measurement and analysis methods of electrochemical impedance spectroscopy for lithium batteries[J]. Energy Storage Science and Technology, 2018, 7(4): 732-749. | |
36 | LI M, ODOM S A, PANCOAST A R, et al. Experimental protocols for studying organic non-aqueous redox flow batteries[J]. ACS Energy Letters, 2021, 6(11): 3932-3943. |
37 | ROZNYATOVSKAYA N V, ROZNYATOVSKY V A, HÖHNE C C, et al. The role of phosphate additive in stabilization of sulphuric-acid-based vanadium(V) electrolyte for all-vanadium redox-flow batteries[J]. Journal of Power Sources, 2017, 363: 234-243. |
38 | ABBAS S, HWANG J, KIM H, et al. Enzyme-inspired formulation of the electrolyte for stable and efficient vanadium redox flow batteries at high temperatures[J]. ACS Applied Materials & Interfaces, 2019, 11(30): 26842-26853. |
39 | LIU W Q, ZHAO Z M, LI T Y, et al. A high potential biphenol derivative cathode: Toward a highly stable air-insensitive aqueous organic flow battery[J]. Science Bulletin, 2021, 66(5): 457-463. |
40 | PAN M G, LU Y, LU S Y, et al. The dual role of bridging phenylene in an extended bipyridine system for high-voltage and stable two-electron storage in redox flow batteries[J]. ACS Applied Materials & Interfaces, 2021, 13(37): 44174-44183. |
41 | ZHANG C K, ZHANG L Y, DING Y, et al. Eutectic electrolytes for high-energy-density redox flow batteries[J]. ACS Energy Letters, 2018, 3(12): 2875-2883. |
42 | DING Y, ZHANG C K, ZHANG L Y, et al. Insights into hydrotropic solubilization for hybrid ion redox flow batteries[J]. ACS Energy Letters, 2018, 3(11): 2641-2648. |
43 | LV Y Q, ZHAO M, DU Y D, et al. Engineering a self-adaptive electric double layer on both electrodes for high-performance zinc metal batteries[J]. Energy & Environmental Science, 2022, 15(11): 4748-4760. |
44 | ZHAO E W, LIU T, JÓNSSON E, et al. In situ NMR metrology reveals reaction mechanisms in redox flow batteries[J]. Nature, 2020, 579(7798): 224-228. |
45 | ZHAO E W, SHELLARD E J K, KLUSENER P A A, et al. In situ bulk magnetization measurements reveal the state of charge of redox flow batteries[J]. Chemical Communications, 2022, 58(9): 1342-1345. |
46 | JING Y, ZHAO E W, GOULET M A, et al. In situ electrochemical recomposition of decomposed redox-active species in aqueous organic flow batteries[J]. Nature Chemistry, 2022, 14(10): 1103-1109. |
47 | FULFER K D, KURODA D G. Solvation structure and dynamics of the lithium ion in organic carbonate-based electrolytes: A time-dependent infrared spectroscopy study[J]. The Journal of Physical Chemistry C, 2016, 120(42): 24011-24022. |
48 | CHANG N N, LI T Y, LI R, et al. An aqueous hybrid electrolyte for low-temperature zinc-based energy storage devices[J]. Energy & Environmental Science, 2020, 13(10): 3527-3535. |
49 | DUAN W T, VEMURI R S, MILSHTEIN J D, et al. A symmetric organic-based nonaqueous redox flow battery and its state of charge diagnostics by FTIR[J]. Journal of Materials Chemistry A, 2016, 4(15): 5448-5456. |
50 | LI J T, ZHOU Z Y, BROADWELL I, et al. In-situ infrared spectroscopic studies of electrochemical energy conversion and storage[J]. Accounts of Chemical Research, 2012, 45(4): 485-494. |
51 | HUANG S Q, YUAN Z Z, SALLA M, et al. A redox-mediated zinc electrode for ultra-robust deep-cycle redox flow batteries[J]. Energy & Environmental Science, 2023, 16(2): 438-445. |
52 | NOLTE O, GEITNER R, HAGER M D, et al. IR spectroscopy as a method for online electrolyte state assessment in RFBs[J]. Advanced Energy Materials, 2021, 11(28): 2100931. |
53 | LI L, SU Y H, JI Y L, et al. A long-lived water-soluble phenazine radical cation[J]. Journal of the American Chemical Society, 2023, 145(10): 5778-5785. |
54 | HU B, TANG Y J, LUO J, et al. Improved radical stability of viologen anolytes in aqueous organic redox flow batteries[J]. Chemical Communications, 2018, 54(50): 6871-6874. |
55 | YANG Z A, LUO Y W, GAO X A, et al. High-safety all-solid-state lithium-ion battery working at ambient temperature with in situ UV-curing polymer electrolyte on the electrode[J]. ChemElectroChem, 2020, 7(12): 2599-2607. |
56 | CHEN Z X, MEI S W, LI W J, et al. Study of multi-electron redox mechanism via electrochromic behavior in hexaazatrinaphthylene-based polymer as the cathode of lithium-organic batteries[J]. Journal of Materials Chemistry A, 2021, 9(47): 27010-27018. |
57 | WONG A A, AZIZ M J, RUBINSTEIN S. Direct visualization of electrochemical reactions and comparison of commercial carbon papers in operando by fluorescence microscopy using a quinone-based flow cell[J]. ECS Transactions, 2017, 77(11): 153-161. |
58 | WONG A A, RUBINSTEIN S M, AZIZ M J. Direct visualization of electrochemical reactions and heterogeneous transport within porous electrodes in operando by fluorescence microscopy[J]. Cell Reports Physical Science, 2021, 2(4): 100388. |
59 | XIN H J, WANG H, ZHANG W, et al. Frontispiece: In operando visualization and dynamic manipulation of electrochemical processes at the electrode-solution interface[J]. Angewandte Chemie International Edition, 2022, 61(36): doi: 10.1002/anie.202283661. |
60 | ZHAO E W, JÓNSSON E, JETHWA R B, et al. Coupled in situ NMR and EPR studies reveal the electron transfer rate and electrolyte decomposition in redox flow batteries[J]. Journal of the American Chemical Society, 2021, 143(4): 1885-1895. |
61 | KLOD S, DUNSCH L. A combination of in situ ESR and in situ NMR spectroelectrochemistry for mechanistic studies of electrode reactions: The case of p-benzoquinone[J]. Magnetic Resonance in Chemistry, 2011, 49(11): 725-729. |
62 | ZHI L P, LI T Y, LIU X Q, et al. Functional complexed zincate ions enable dendrite-free long cycle alkaline zinc-based flow batteries[J]. Nano Energy, 2022, 102: 107697. |
63 | MASUDA H, ISHIDA N, OGATA Y, et al. In situ visualization of Li concentration in all-solid-state lithium ion batteries using time-of-flight secondary ion mass spectrometry[J]. Journal of Power Sources, 2018, 400: 527-532. |
64 | YU Z Y, SHAO Y, MA L P, et al. Revealing the sulfur redox paths in a Li-S battery by an in situ hyphenated technique of electrochemistry and mass spectrometry[J]. Advanced Materials, 2022, 34(7): 2106618. |
65 | WANG J H, DING T, WU K F. Charge transfer from n-doped nanocrystals: Mimicking intermediate events in multielectron photocatalysis[J]. Journal of the American Chemical Society, 2018, 140(25): 7791-7794. |
66 | WANG J H, DING T, WU K F. Electron transfer into electron-accumulated nanocrystals: Mimicking intermediate events in multielectron photocatalysis Ⅱ[J]. Journal of the American Chemical Society, 2018, 140(32): 10117-10120. |
[1] | 屈康康, 刘亚华, 洪叠, 沈兆曦, 韩效钊, 张旭. 中性水系有机液流电池正极电解质的研究进展[J]. 储能科学与技术, 2023, 12(5): 1570-1588. |
[2] | 彭康, 刘俊敏, 唐珙根, 杨正金, 徐铜文. 水系有机液流电池电化学活性分子研究现状及展望[J]. 储能科学与技术, 2022, 11(4): 1246-1263. |
[3] | 吕思奇, 李娜, 陈浩森, 焦树强, 宋维力. 电池电极过程可视化与定量化技术的研究进展[J]. 储能科学与技术, 2022, 11(3): 795-817. |
[4] | 杨家豪, 施兆平, 王意波, 葛君杰, 刘长鹏, 邢巍. 用于酸性析氧反应研究的原位表征技术[J]. 储能科学与技术, 2021, 10(6): 1877-1890. |
[5] | 吕腾, 叶子祥, 李泾, 储富强, 林本才. 烷基磺酸蒽醌电解质的合成及其在液流电池中的应用[J]. 储能科学与技术, 2021, 10(4): 1317-1324. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||