储能科学与技术 ›› 2023, Vol. 12 ›› Issue (12): 3780-3788.doi: 10.19799/j.cnki.2095-4239.2023.0506

• 复合储热专辑 • 上一篇    下一篇

基于翅片结构优化的环境温差能采集热储特性分析

蔡阳1(), 周泽宇1, 黄晓燕1, 邓杰泓1, 赵福云2   

  1. 1.暨南大学国际能源学院,广东 珠海 519070
    2.武汉大学动力与机械学院,湖北 武汉 430072
  • 收稿日期:2023-07-27 修回日期:2023-08-11 出版日期:2023-12-05 发布日期:2023-12-09
  • 通讯作者: 蔡阳 E-mail:thomascai301@163.com
  • 作者简介:蔡阳(1989—),男,副教授,研究方向为可持续能源与建筑环境,E-mail:thomascai301@163.com
  • 基金资助:
    广东省基础与应用基础研究基金联合基金青年基金项目(2020A1515110598);广东省基础与应用基础研究基金自然科学基金面上项目(2023A1515010681);广东省普通高校重点领域专项项目(2022ZDZX1005);中央高校专项培育项目(21622417)

Performance analysis of an environmental temperature-difference energy harvest device based on fin structure optimization

Yang CAI1(), Zeyu ZHOU1, Xiaoyan HUANG1, Jiehong DENG1, Fuyun ZHAO2   

  1. 1.International Energy College, Jinan University, Zhuhai 519070, Guangdong, China
    2.School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, Hubei, China
  • Received:2023-07-27 Revised:2023-08-11 Online:2023-12-05 Published:2023-12-09
  • Contact: Yang CAI E-mail:thomascai301@163.com

摘要:

由于物联网节点规模的不断扩大,建筑日益增长的能耗与有限化石能源储备间矛盾激增。为了更大程度利用环境热能供电,打破环保型物联网节点规模和能耗的瓶颈,本研究对一种基于相变型环形热电技术的环境温差能采集装置进行翅片结构优化研究,将相变蓄热技术与环形拓扑热电进行耦合,使两者结构优势相互结合;对热沉翅片结构和参数进行优化,增强其相变蓄放热和控温的性能,进一步强化装置对环境温差能的采集利用能力。本工作探究翅片密度、体积分数、相对高度对热沉热储性能的影响,并对装置的热流传递过程和能量采集性能进行对比分析。研究结果表明:翅片密度增大、体积分数减小,相对高度提高有利于热沉蓄热性能和ATEG发电性能提高。在正弦温度变化边界下,该装置功率和能量效率峰值可达到31.57 μW和0.073%,翅片效率可达到0.981。结构Ⅴ热沉蓄放热和温控性能更强,对应装置在计算过程产能为0.0453 J,较结构Ⅰ提升110.4%,能量采集性能更强。本研究有望进一步提高环境温差能采集装置的热储供电潜力,为全面构建绿色物联网节点打下基础。

关键词: 翅片结构优化, 相变型环形热电技术, 环境温差能采集, 热储特性分析, 能量采集性能分析

Abstract:

Owing to the continuous expansion of the scale of Internet of Things (IoT) nodes, the contradiction between the growing energy consumption of buildings and the limited fossil energy reserves has surged. To facilitate increased applications of environmental thermal energy for power supply and break the bottleneck of node scale and energy consumption of environmentally friendly IoT, in this study, the fin structure of the heat sink in an environmental temperature-difference energy harvesting device based on phase-change annular thermoelectric technology is optimized. Phase-change heat storage technology is coupled the thermoelectric ring topology to exploit its combined advantages. In addition, the structure and parameters of the heat sink fin are optimized; hence, its heat storage capacity and release, as well as the temperature control performance, are enhanced, and the capability of the device to collect and utilize the environmental temperature-difference energy is further strengthened. In addition, the effects of different fin structures and parameters on the heat storage characteristics are investigated, and the heat flow transfer process and energy-harvest performance of the device are analyzed. The results reveal that with an increase in fin density, the volume fraction decreases or the relative height increases, and the heat storage performance and ATEG power generation are improved. Under the boundary conditions of sinusoidal temperature change, the peak power and efficiency of the device reach 31.57 μW and 0.073%, respectively, with a fin efficiency of 0.981. The structure V heat sink exhibits stronger heat storage and release and temperature control performance, and the capacity of the device were calculated to be 0.0453 J, which is 110.4% greater than that of structure I. This study is expected to further improve the heat storage power supply potential of an environmental temperature difference energy self-powered device and provide a foundation for the comprehensive construction of green IoT nodes.

Key words: fin structure optimization, phase-change annular thermoelectric, environmental temperature difference energy harvest, heat storage characteristic analysis, energy harvest performance analysis

中图分类号: