储能科学与技术 ›› 2016, Vol. 5 ›› Issue (2): 159-171.doi: 10.3969/j.issn.2095-4239.2016.02.006
詹元杰, 陈宇阳, 胡飞, 陈彬, 闫勇, 林明翔, 赵俊年, 武怿达, 王昊, 贲留斌, 刘燕燕, 黄学杰
收稿日期:
2016-02-16
修回日期:
2016-02-20
出版日期:
2016-03-01
发布日期:
2016-03-01
通讯作者:
黄学杰,研究员,研究方向为锂离子电池及其关键材料,E-mail:xjhuang@jphy.ac.cn.
作者简介:
詹元杰(1988--),男,硕士研究生,研究方向为锂离子电池正极材料及其改性,E-mail:zhangyuanjie13@mails.ucas.ac.cn
ZHAN Yuanjie, CHEN Yuyang, HU Fei, CHEN Bin, YAN Yong, LIN Mingxiang, ZHAO Junnian, WU Yida, WANG Hao, BEN Liubin, LIU Yanyan, HUANG Xuejie
Received:
2016-02-16
Revised:
2016-02-20
Online:
2016-03-01
Published:
2016-03-01
摘要: 该文是一篇近两个月的锂电池文献评述,以"lithium"和"batter*"为关键词检索了Web of Science从2015年12月1日至2016年1月25日上线的锂电池研究论文,共有1889篇,选择其中100篇加以评论.正极材料主要研究了富锂相材料,三元材料和尖晶石材料的掺杂和表面包覆及界面层改进对其循环寿命的影响.高容量的硅基复合负极材料研究侧重于SEI界面层,复合材料,黏结剂及反应机理研究,电解液添加剂,固态电解质电池,锂硫电池的论文也有多篇.理论模拟工作侧重于界面结构以及SEI形成机理分析.除了以材料为主的研究之外,针对电池界面,电极结构和性能分析的研究论文也有多篇.
中图分类号:
詹元杰, 陈宇阳, 胡飞, 陈彬, 闫勇, 林明翔, 赵俊年, 武怿达, 王昊, 贲留斌, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2015.12.1--2016.1.25)[J]. 储能科学与技术, 2016, 5(2): 159-171.
ZHAN Yuanjie, CHEN Yuyang, HU Fei, CHEN Bin, YAN Yong, LIN Mingxiang, ZHAO Junnian, WU Yida, WANG Hao, BEN Liubin, LIU Yanyan, HUANG Xuejie. Reviews of selected 100 recent papers for lithium batteries (Dec. 1,2015 to Jan. 25,2016)[J]. Energy Storage Science and Technology, 2016, 5(2): 159-171.
[1] KONISHI H,HIRANO T,TAKAMATSU D,et al. Effect of composition of transition metals on stability of charged Li-rich layer-structured cathodes, Li 1.2 Ni 0.2- x Mn 0.6- x Co 2 x O 2 ( x =0, 0.033, and 0.067), at high temperatures[J]. Electrochimica Acta,2015,186:591-597. [2] SON I H,PARK J H,KWON S,et al. Self-terminated artificial SEI layer for nickel-rich layered cathode material via mixed gas chemical vapor deposition[J]. Chemistry of Materials,2015,27(21):7370-7379. [3] YE D,SUN C,CHEN Y,et al. Ni-induced stepwise capacity increase in Ni-poor Li-rich cathode materials for high performance lithium ion batteries[J]. Nano Research,2015,8(3):808-820. [4] ZHAO T,LI L,CHEN R,et al. Design of surface protective layer of LiF/FeF 3 nanoparticles in Li-rich cathode for high-capacity Li-ion batteries[J]. Nano Energy,2015,15:164-176. [5] SU Y,CUI S,ZHUO Z,et al. Enhancing the high-voltage cycling performance of LiNi 0.5 Mn 0.3 Co 0.2 O 2 by retarding its interfacial reaction with an electrolyte by atomic-layer-deposited Al 2 O 3 [J]. ACS Applied Materials & Interfaces,2015,7(45):25105-25112. [6] LI Y,BETTGE M,BARENO J,et al. Exploring electrochemistry and interface characteristics of lithium-ion cells with Li 1.2 Ni 0.15 Mn 0.55 Co 0.1 O 2 positive and Li 4 Ti 5 O 12 negative electrodes[J]. Journal of the Electrochemical Society,2015,162(13):A7049-A7059. [7] YANG P,ZHENG J,KUPPAN S,et al. Phosphorus enrichment as a new composition in the solid electrolyte interphase of high-voltage cathodes and its effects on battery cycling[J]. Chemistry of Materials,2015,27(21):7447-7451. [8] QUINLAN R,LU A,KWABID Y C,et al. XPS investigation of the electrolyte induced stabilization of LiCoO 2 and "AlPO 4 "-coated LiCoO 2 composite electrodes[J]. Journal of the Electrochemical Society,2016,163(2):A300-A308. [9] ZHAO E,CHEN M,CHEN D,et al. A versatile coating strategy to highly improve the electrochemical properties of layered oxide LiMO 2 (M=Ni 0.5 Mn 0.5 and Ni 1/3 Mn 1/3 Co 1/3 )[J]. ACS Applied Materials & Interfaces,2015,7(49):27096-27105. [10] SHIMOYAMADA A,YAMAMOTO K,YOSHIDA R,et al. Dynamical observation of lithium insertion/extraction reaction during charge-discharge processes in Li-ion batteries by in situ spatially resolved electron energy-loss spectroscopy[J]. Microscopy,2015,64(6):401-408. [11] SHUKLA A K,RAMASSE Q M,OPHUS C,et al. Unravelling structural ambiguities in lithium- and manganese-rich transition metal oxides[J]. Nature Communications,2015,6:doi:10.1038/ncom ms9711. [12] PIECZONKA N P W,BORGEL V,ZIV B,et al. Lithium polyacrylate (LiPAA) as an advanced binder and a passivating agent for high-voltage Li-ion batteries[J]. Advanced Energy Materials,2015,5(23):doi:10.1002/aenm.201501008. [13] DENG Y F,ZHAO S X,XU Y H,et al. Impact of P-doped in spinel LiNi 0.5 Mn 1.5 O 4 on degree of disorder, grain morphology, and electrochemical performance[J]. Chemistry of Materials,2015,27(22):7734-7742. [14] LIU H,KLOEPSCH R,WANG J,et al. Truncated octahedral LiNi 0.5 Mn 1.5 O 4 cathode material for ultralong-life lithium-ion battery:Positive (100) surfaces in high-voltage spinel system[J]. Journal of Power Sources,2015,300:430-437. [15] SACHS M,GELLERT M,CHEN M,et al. LiNi 0.5 Mn 1.5 O 4 high-voltage cathode coated with Li 4 Ti 5 O 12 :A hard X-ray photoelectron spectroscopy (HAXPES) study[J]. Physical Chemistry Chemical Physics,2015,17(47):31790-31800. [16] HE M,BOULET-ROBLIN L,BOREL P,et al. Effects of solvent, lithium salt, and temperature on stability of carbonate-based electrolytes for 5.0 V LiNi 0.5 Mn 1.5 O 4 electrodes[J]. Journal of the Electrochemical Society,2016,163(2):A83-A89. [17] KIM C A,CHOI H J,LEE J H,et al. Influence of surface modification on electrochemical performance of high voltage spinel ordered-LiNi 0.5 Mn 1.5 O 4 exposed to 5.3 V for 100 h before and after surface modification with ALD method[J]. Electrochimica Acta,2015,184:134-142. [18] CHOI H W,KIM S J,RIMY H,et al. Effect of lithium deficiency on lithium-ion battery cathode Li x Ni 0.5 Mn 1.5 O 4 [J]. Journal of Physical Chemistry C,2015,119(49):27192-27199. [19] BIANCHINI M,FAUTH F,SUARD E,et al. Spinel materials for Li-ion batteries:New insights obtained by operando neutron and synchrotron X-ray diffraction[J]. Acta Crystallogr B Struct. Sci. Cryst. Eng. Mater.,2015,71(P 6):688-701. [20] TAKAHASHI I,ARAI H,MURAYAMA H,et al. Phase transition kinetics of LiNi 0.5 Mn 1.5 O 4 analyzed by temperature-controlled operando X-ray absorption spectroscopy[J]. Physical Chemistry Chemical Physics,2016,18(3):1897-1904. [21] YIM T,KANG K S,MUN J,et al. Understanding the effects of a multi-functionalized additive on the cathode-electyolyte interfacial stability of Ni-rich materials[J]. Journal of Power Sources,2016,302:431-438. [22] ARTHUR Z, CHIU H C,LU X,et al. Spontaneous reaction between an uncharged lithium iron silicate cathode and a LiPF 6 -based electrolyte[J]. Chemical Communications,2016,52(1):190-193. [23] DI L,MANZI D J,VITUCCI F M,et al. Effect of the iron doping in LiCoPO 4 cathode materials for lithium cells[J]. Electrochimica Acta,2015,185:17-27. [24] SCHOIBER J,BERGER R J F,YADA C,et al. A two-step synthesis for Li 2 CoPO 4 F as high-voltage cathode material[J]. Journal of the Electrochemical Society,2015,162(14):A2679-A2683. [25] LI Y,WEKER J N,GENT W E,et al. Dichotomy in the lithiation pathway of ellipsoidal and platelet LiFePO 4 particles revealed through nanoscale operando state-of-charge imaging[J]. Advanced Functional Materials,2015,25(24):3677-3687. [26] KIM H J,CHOI S,LEE S J,et al. Controlled prelithiation of silicon monoxide for high performance lithium-ion rechargeable full cells[J]. Nano Letters,2016,16(1):282-288. [27] ZHAO H,WEI Y,QIAO R,et al. Conductive polymer binder for high-tap-density nanosilicon material for lithium-ion battery negative electrode application[J]. Nano Lett.,2015,15(12):7927-7932. [28] KWON T W,JEONG Y K,DENIZ E,et al. Dynamic cross-linking of polymeric binders based on host-guest interactions for silicon anodes in lithium ion batteries[J]. ACS Nano,2015,9(11):11317-11324. [29] HASSAN F M,BATMAZ R,LI J,et al. Evidence of covalent synergy in silicon-sulfur-graphene yielding highly efficient and long-life lithium-ion batteries[J]. Nature Communications,2015,6:doi:10.1038/ncomms9597. [30] SWAMY T,CHIANG Y M. Electrochemical charge transfer reaction kinetics at the silicon-liquid electrolyte interface[J]. Journal of the Electrochemical Society,2015,162(13):A7129-A7134. [31] BORDES A,DE VITO E,HAON C,et al. Investigation of lithium insertion mechanisms of a thin-film Si electrode by coupling time-of-flight secondary-ion mass spectrometry, X-ray photoelectron spectroscopy, and focused-ion-beam/SEM[J]. ACS Applied Materials & Interfaces,2015,7(50):27853-27862. [32] HUANG Y Y,HAN D,HE Y B,et al. Si nanoparticles intercalated into interlayers of slightly exfoliated graphite filled by carbon as anode with high volumetric capacity for lithium-ion battery[J]. Electrochimica Acta,2015,184:364-370. [33] LIU Y,VISHNIAKOU S,YOO J,et al. Engineering heteromaterials to control lithium ion transport pathways[J]. Scientific Reports,2015,5:doi:10.1038/srep18482. [34] BECKER C R,PROKES S M,LOVE C T. Enhanced lithiation cycle stability of ALD-coated confined a-Si microstructures determined using in situ AFM[J]. ACS Applied Materials & Interfaces,2016,8(1):530-537. [35] DOGAN F,VAUGHEY J T. Effect of surface termination on electrochemical performance of silicon thin films[J]. Journal of the Electrochemical Society,2016,163(2):A62-A66. [36] GRILLON N,BOUYSSOU E,JACQUES S,et al. Failure mechanisms analysis of all-solid-state thin film microbatteries from an extended electrochemical reliability study[J]. Journal of the Electrochemical Society,2015,162(14):A2847-A2853. [37] NISHIKAWA K,MOON J,KANAMURA K. In-situ observation of volume expansion behavior of a silicon particle in various electrolytes[J]. Journal of Power Sources,2016,302:46-52. [38] YAN C,CHEN G,SUN J,et al. Edge dislocation surface modification:A new and efficient strategy for realizing outstanding lithium storage performance[J]. Nano Energy,2015,15:558-566. [39] QUACKENBUSH N F,WANGOH L,SCANLON D O,et al. Interfacial effects in δ-Li x VOPO 4 and evolution of the electronic structure[J]. Chemistry of Materials,2015,27(24):8211-8219. [40] MOTOYAMA M,EJIRI M,IRIYAMA Y. Modeling the nucleation and growth of Li at metal current collector/LiPON interfaces[J]. Journal of the Electrochemical Society,2015,162(13):A7067-A7071. [41] GONG C,RUZMETOV D,PEARSE A,et al. Surface/interface effects on high-performance thin-film all-solid-state Li-ion batteries[J]. ACS Applied Materials & Interfaces,2015,7(47):26007-26011. [42] BUCUR C B,LITA A,OSADA N,et al. A soft, multilayered lithium-electrolyte interface[J]. Energy & Environmental Science,2016,9(1):112-116. [43] SHIN W K,PARK S M,LEE Y S,et al. Composite gel electrolytes for suppressing lithium dendrite growth and improving cycling performance of LiNi 0.5 Mn 1.5 O 4 electrodes[J]. Journal of the Electrochemical Society,2015,162(14):A2628-A2634. [44] XIA L,XIA Y,WANG C,et al. 5V-class electrolytes based on fluorinated solvents for Li-ion batteries with excellent cyclability[J]. Chem. Electro. Chem.,2015,2(11):1707-1712. [45] SUO L,BORODIN O,GAO T,et al. "Water-in-salt" electrolyte enables high-voltage aqueous lithium-ion chemistries[J]. Science,2015,350(6263):938-943. [46] SONG Y M,KIM C K,KIM K E,et al. Exploiting chemically and electrochemically reactive phosphite derivatives for high-voltage spinel LiNi 0.5 Mn 1.5 O 4 cathodes[J]. Journal of Power Sources,2016,302:22-30. [47] SEO D M,CAO C N,YOUNG B T,et al. Characterizing solid electrolyte interphase on Sn anode in lithium ion battery[J]. Journal of the Electrochemical Society,2015,162(13):A7091-A7095. [48] QIAN J,XU W,HATTACHARYA P B,et al. Dendrite-free Li deposition using trace-amounts of water as an electrolyte additive[J]. Nano Energy,2015,15:135-144. [49] CHOUDHURY S,MANGAL R,AGRAWAL A,et al. A highly reversible room-temperature lithium metal battery based on crosslinked hairy nanoparticles[J]. Nature Communications,2015,6:10101. [50] SHARAFI A,MEYER H M,NANDA J,et al. Characterizing the Li-Li 7 La 3 Zr 2 O 12 interface stability and kinetics as a function of temperature and current density[J]. Journal of Power Sources,2016,302:135-139. [51] OH D Y,NAM Y J,PARK K H,et al. Excellent compatibility of solvate ionic liquids with sulfide solid electrolytes:Toward favorable ionic contacts in bulk-type all-solid-state lithium-ion batteries[J]. Advanced Energy Materials,2015,5(22):doi:10.1002/aenm. 201500865. [52] GALLUS D R,WAGNER S R,WIEMERS M,et al. New insights into the structure-property relationship of high-voltage electrolyte components for lithium-ion batteries using the pK(a) value[J]. Electrochimica Acta,2015,184:410-416. [53] NURPEISSOVA A D,PARK I,KIM S S,et al. Epicyanohydrin as an interface stabilizer agent for cathodes of Li-ion batteries[J]. Journal of the Electrochemical Society,2016,163(2):A171-A177. [54] DU F,ZHAO N,LI Y,et al. All solid state lithium batteries based on lamellar garnet-type ceramic electrolytes[J]. Journal of Power Sources,2015,300:24-28. [55] JEONG G,KIM H,PARK J H,et al. Nanotechnology enabled rechargeable Li-SO 2 batteries:Another approach towards post-lithium-ion battery systems[J]. Energy & Environmental Science,2015,8(11):3173-3180. [56] CHEN Y,TANG Z,YANG S,et al. A high-voltage all-solid-state lithium-ion battery with Li-Mn-Ni-O and silicon thin-film electrodes[J]. Materials Technology,2015,30(A2):A58-A63. [57] HAKARI T,HAYASHI A,TATSUMISAGO M. Highly utilized lithium sulfide active material by enhancing conductivity in all-solid-state batteries[J]. Chemistry Letters,2015,44(12):1664-1666. [58] ZHOU Y,ZHOU C,LI Q,et al. Enabling prominent high-rate and cycle performances in one lithium-sulfur battery:Designing permselective gateways for Li + transportation in holey-CNT/S cathodes[J]. Advanced Materials,2015,27(25):3774-3781. [59] MA Z X,HUANG Q,JIANG Q Q,et al. Enhanced cycling stability of lithium-sulfur batteries by electrostatic-interaction[J]. Electrochimica Acta,2015,182:884-890. [60] KIM H M,HWANG J Y,MANTHIRAM A,et al. High-performance lithium-sulfur batteries with a self-assembled multiwall carbon nanotube interlayer and a robust electrode-electrolyte interface[J]. ACS Applied Materials & Interfaces,2016,8(1):983-987. [61] EPP V,MA Q,HAMMER E M,et al. Very fast bulk Li ion diffusivity in crystalline Li 1.5 Al 0.5 Ti 1.5 (PO 4 ) 3 as seen using NMR relaxometry[J]. Physical Chemistry Chemical Physics,2015,17(48): 32115-32121. [62] LINDGREN F,XU C,MAIBACH J,et al. A hard X-ray photoelectron spectroscopy study on the solid electrolyte interphase of a lithium 4,5-dicyano-2-(trifluoromethyl) imidazolide based electrolyte for Si-electrodes[J]. Journal of Power Sources,2016,301:105-112. [63] MCCALLA E,ABAKUMOV A M,SAUBANERE M,et al. Visualization of O-O peroxo-like dimers in high-capacity layered oxides for Li-ion batteries[J]. Science,2015,350(6267):1516-1521. [64] MANKA D,IVERS-TIFFÉE E. Electro-optical measurements of lithium intercalation/de-intercalation at graphite anode surfaces[J]. Electrochimica Acta,2015,186:642-653. [65] BUELTER H,PETERS F,SCHWENZEL J,et al. Comparison of electron transfer properties of the SEI on graphite composite and metallic lithium electrodes by SECM at OCP[J]. Journal of the Electrochemical Society,2015,162(13):A7024-A7036. [66] CHANG H J,ILOTT A J,TREASE M,et al. Correlating microstructural lithium metal growth with electrolyte salt depletion in lithium batteries using 7 Li MRI[J]. J. Am .Chem .Soc.,2015,137(48):15209-15216. [67] LIU J,LI G,FATHY H K. A computationally efficient approach for optimizing lithium-ion battery charging[J]. Journal of Dynamic Systems Measurement and Control-Transactions of the Asme,2016,138(2):21009-21009. [68] BUCHBERGER I,SEIDLMAYER S,POKHAREL A,et al. Aging analysis of graphite/LiNi 1/3 Mn 1/3 Co 1/3 O 2 cells using XRD, PGAA, and AC impedance[J]. Journal of The Electrochemical Society,2015,162(14):A2737-A2746. [69] BIRKENMAIER C,BITZER B,HARZHEIM M,et al. Lithium plating on graphite negative electrodes:Innovative qualitative and quantitative investigation methods[J]. Journal of the Electrochemical Society,2015,162(14):A2646-A2650. [70] KINDERMANN F M,NOEL A,ERHARD S V,et al. Long-term equalization effects in Li-ion batteries due to local state of charge inhomogeneities and their impact on impedance measurements[J]. Electrochimica Acta,2015,185:107-116. [71] HELD M,SENNHAUSER U. Stress-induced ageing of lithium-ion batteries[J]. Chimia,2015,69(12):737-740. [72] NADIMPALLI S P V,SETHURAMAN V A,ABRAHAM D P,et al. Stress evolution in lithium-ion composite electrodes during electrochemical cycling and resulting internal pressures on the cell casing[J]. Journal of the Electrochemical Society,2015,162(14):A2656-A2663. [73] HUEGER E,STAHN J,SCHMIDT H. Neutron reflectometry to measure in situ Li permeation through ultrathin silicon layers and interfaces[J]. Journal of the Electrochemical Society,2015, 162(13):A7104-A7109. [74] KATAYAMA M,MIYAHARA R,WATANABE T,et al. Development of dispersive XAFS system for analysis of time-resolved spatial distribution of electrode reaction[J]. Journal of Synchrotron Radiation,2015,22:1227-1232. [75] BEATTIE S D,LOVERIDGE M J,LAIN M J,et al. Understanding capacity fade in silicon based electrodes for lithium-ion batteries using three electrode cells and upper cut-off voltage studies[J]. Journal of Power Sources,2016,302:426-430. [76] BERKES B B,JOZWIUK A,SOMMER H,et al. Simultaneous acquisition of differential electrochemical mass spectrometry and infrared spectroscopy data for in situ characterization of gas evolution reactions in lithium-ion batteries[J]. Electrochemistry Communications,2015,60:64-69. [77] FUKUMITSU H,OMORI M,TERADA K,et al. Development of in situ cross-sectional raman imaging of LiCoO 2 cathode for Li-ion battery[J]. Electrochemistry,2015, 83(11):993-996. [78] OTOYAMA M,ITO Y,HAYASHI A,et al. Raman imaging for LiCoO 2 composite positive electrodes in all-solid-state lithium batteries using Li 2 S-P 2 S 5 solid electrolytes[J]. Journal of Power Sources,2016,302:419-425. [79] GAUTHIER M,CARNEY T J ,GRIMAUD A,et al. Electrode-electrolyte interface in Li-ion batteries:Current understanding and new insights[J]. Journal of Physical Chemistry Letters,2015,6(22):4653-4672. [80] ZHOU L,LESKES M,LIU T,et al. Probing dynamic processes in lithium-ion batteries by in situ NMR spectroscopy:Application to Li 1.08 Mn 1.92 O 4 electrodes[J]. Angewandte Chemie-International Edition,2015,54(49):14782-14786. [81] KITZLER T, MAAWAD E,TOEBBENS D M,et al. The electro-chemo-mechanical coupling in lithium alloy electrodes and its origins[J]. Journal of the Electrochemical Society,2015,162(14):A2684-A2691. [82] WU C H,WEATHERUP R S,SALMERON M B. Probing electrode/electrolyte interfaces in situ by X-ray spectroscopies:Old methods, new tricks[J]. Physical Chemistry Chemical Physics,2015, 17(45):30229-30239. [83] PHILIPPE B,HAHLIN M,EDSTROM K,et al. Photoelectron spectroscopy for lithium battery interface studies[J]. Journal of the Electrochemical Society,2016,163(2):A178-A191. [84] BERNARD P,MARTINEZ H,TESSIER C,et al. Role of negative electrode porosity in long-term aging of NMC//graphite Li-ion batteries[J]. Journal of the Electrochemical Society,2015,162(13):A7096-A7103. [85] SUI T,SONG B,DLUHOS J,et al. Nanoscale chemical mapping of Li-ion battery cathode material by FIB-SEM and TOF-SIMS multi-modal microscopy[J]. Nano Energy,2015,17:254-260. [86] BURGOS-MELLADO C,ORCHARD M E,KAZERANI M,et al. Particle-filtering-based estimation of maximum available power state in lithium-ion batteries[J]. Applied Energy,2016,161:349-363. [87] DE VRIES H,THANH T N,OH B. Increasing the cycle life of lithium ion cells by partial state of charge cycling[J]. Microelectronics Reliability,2015,55(11):2247-2253. [88] GE H,HUANG J,ZHANG J,et al. Temperature-adaptive alternating current preheating of lithium-ion batteries with lithium deposition prevention[J]. Journal of the Electrochemical Society,2016,163(2):A290-A299. [89] PANCHAL S,DINCER I,AGELIN-CHAAB M,et al. Experimental and theoretical investigation of temperature distributions in a prismatic lithium-ion battery[J]. International Journal of Thermal Sciences,2016,99:204-212. [90] HEUBNER C,SCHNEIDER M,LAMMEL C,et al. Local heat generation in a single stack lithium ion battery cell[J]. Electrochimica Acta,2015,186:404-412. [91] GALLAGHER K G,TRASK S E,BAUER C,et al. Optimizing areal capacities through understanding the limitations of lithium-ion electrodes[J]. Journal of the Electrochemical Society,2016,163(2):A138-A149. [92] VISHWAKARMA V,WAGHELA C,WEI Z,et al. Heat transfer enhancement in a lithium-ion cell through improved material-level thermal transport[J]. Journal of Power Sources,2015,300:123-131. [93] CAMACHO-FORERO L E,SMITH T W,BERTOLINI S,et al. Reactivity at the lithium-metal anode surface of lithium-sulfur batteries[J]. Journal of Physical Chemistry C,2015,119(48):26828-26839. [94] DABROWSKI T,CIACCHI L C. Atomistic modeling of the charge process in lithium/air batteries[J]. Journal of Physical Chemistry C,2015,119(46):25807-25817. [95] LEPLEY N D,HOLZWARTH N A W. Modeling interfaces between solids:Application to Li battery materials[J]. Physical Review B,2015,92(21):doi: http://dx.doi.org/10.1103/PhysRevB.92.214201. [96] ROHRER J,KAGHAZCHI P. Structure sensitivity in the decom position of ethylene carbonate on Si anodes[J]. Chem. Phys. Chem.,2014,15(18):3950-3954. [97] TEBBE J L,HOLDER A M,MUSGRAVE C.B. Mechanisms of LiCoO 2 cathode degradation by reaction with HF and protection by thin oxide coatings[J]. ACS Applied Materials & Interfaces,2015,7(43):24265-24278. [98] SOTO F A,MA Y,DE LA HOZJ M M,et al. Formation and growth mechanisms of solid-electrolyte lnterphase layers in rechargeable batteries[J]. Chemistry of Materials,2015,27(23):7990-8000. [99] USHIROGATA K,SODEYAMA K,FUTERA Z,et al. Near-shore aggregation mechanism of electrolyte decomposition products to explain solid electrolyte interphase formation[J]. Journal of the Electrochemical Society,2015,162(14):A2670-A2678. [100] GRYGIEL K,LEE J S,SAKAUSHI K,et al. Thiazolium poly(ionic liquid)s:Synthesis and application as binder for lithium-ion batteries[J]. ACS Macro. Letters,2015,4(12):1312-1316. |
[1] | 元佳宇, 李昕光, 王文超, 付程阔. 考虑质量流量的电池组蛇形冷却结构仿真[J]. 储能科学与技术, 2022, 11(7): 2274-2281. |
[2] | 时雨, 张忠, 杨晶莹, 钱薇, 李昊, 赵祥, 杨欣桐. 储能电池系统提供AGC调频的机会成本建模与市场策略[J]. 储能科学与技术, 2022, 11(7): 2366-2373. |
[3] | 黄鹏, 聂枝根, 陈峥, 舒星, 沈世全, 杨继鹏, 申江卫. 基于优化Elman神经网络的锂电池容量预测[J]. 储能科学与技术, 2022, 11(7): 2282-2294. |
[4] | 张肖洒, 王宏源, 李振彪, 夏志美. 废旧磷酸铁锂电池电极材料的硫酸化焙烧-水浸新工艺[J]. 储能科学与技术, 2022, 11(7): 2066-2074. |
[5] | 徐雄文, 聂阳, 涂健, 许峥, 谢健, 赵新兵. 普鲁士蓝正极软包钠离子电池的滥用性能[J]. 储能科学与技术, 2022, 11(7): 2030-2039. |
[6] | 裴英伟, 张红, 王星辉. 可充电锌离子电池电解质的研究进展[J]. 储能科学与技术, 2022, 11(7): 2075-2082. |
[7] | 霍思达, 薛文东, 李新丽, 李勇. 基于CiteSpace知识图谱的锂电池复合电解质可视化分析[J]. 储能科学与技术, 2022, 11(7): 2103-2113. |
[8] | 申晓宇, 岑官骏, 乔荣涵, 朱璟, 季洪祥, 田孟羽, 金周, 闫勇, 武怿达, 詹元杰, 俞海龙, 贲留斌, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.4.1—2022.5.31)[J]. 储能科学与技术, 2022, 11(7): 2007-2022. |
[9] | 周伟东, 黄秋, 谢晓新, 陈科君, 李薇, 邱介山. 固态锂电池聚合物电解质研究进展[J]. 储能科学与技术, 2022, 11(6): 1788-1805. |
[10] | 李一涛, 沈凯尔, 庞全全. 有机物辅助的硫化物电解质基固态电池[J]. 储能科学与技术, 2022, 11(6): 1902-1918. |
[11] | 周伟, 符冬菊, 刘伟峰, 陈建军, 胡照, 曾燮榕. 废旧磷酸铁锂动力电池回收利用研究进展[J]. 储能科学与技术, 2022, 11(6): 1854-1864. |
[12] | 张浩然, 车海英, 郭凯强, 申展, 张云龙, 陈航达, 周煌, 廖建平, 刘海梅, 马紫峰. Sn掺杂NaNi1/3Fe1/3Mn1/3-x Sn x O2 正极材料制备及其电化学性能[J]. 储能科学与技术, 2022, 11(6): 1874-1882. |
[13] | 张言, 王海, 刘朝孟, 张德柳, 王佳东, 李建中, 高宣雯, 骆文彬. 锂离子电池富镍三元正极材料NCM的研究进展[J]. 储能科学与技术, 2022, 11(6): 1693-1705. |
[14] | 乔荣涵, 岑官骏, 申晓宇, 田孟羽, 季洪祥, 田丰, 起文斌, 金周, 武怿达, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.2.1—2022.3.31)[J]. 储能科学与技术, 2022, 11(5): 1289-1304. |
[15] | 汪红辉, 吴泽钦, 储德韧. 轻度过放模式下钛酸锂电池性能及热安全性[J]. 储能科学与技术, 2022, 11(5): 1305-1313. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||