1 |
辛本舰, 王瑞, 胡阳, 等. 导电剂对LiFePO4锂浆料电池性能的影响[J]. 中国科学: 化学, 2022, 52(7): 1148-1155.
|
|
XIN B J, WANG R, HU Y, et al. The effect of conductive additives on electrochemical performance of LiFePO4-based lithium slurry batteries[J]. Scientia Sinica (Chimica), 2022, 52(7): 1148-1155.
|
2 |
SONG H, OH Y, ÇAKMAKÇı N, et al. Effects of the aspect ratio of the conductive agent on the kinetic properties of lithium ion batteries[J]. RSC Advances, 2019, 9(70): 40883-40886.
|
3 |
KIM K J, LEE T S, KIM H G, et al. A hard carbon/microcrystalline graphite/carbon composite with a core-shell structure as novel anode materials for lithium-ion batteries[J]. Electrochimica Acta, 2014, 135: 27-34.
|
4 |
MAO C Y, WOOD M, DAVID L, et al. Selecting the best graphite for long-life, high-energy Li-ion batteries[J]. Journal of the Electrochemical Society, 2018, 165(9): A1837-A1845.
|
5 |
HATZELL K B, BOOTA M, KUMBUR E C, et al. Flowable conducting particle networks in redox-active electrolytes for grid energy storage[J]. Journal of the Electrochemical Society, 2015, 162(5): A5007-A5012.
|
6 |
HAN Y J, KIM J, YEO J S, et al. Coating of graphite anode with coal tar pitch as an effective precursor for enhancing the rate performance in Li-ion batteries: Effects of composition and softening points of coal tar pitch[J]. Carbon, 2015, 94: 432-438.
|
7 |
CHEN H N, ZOU Q L, LIANG Z J, et al. Sulphur-impregnated flow cathode to enable high-energy-density lithium flow batteries[J]. Nature Communications, 2015, 6: 5877.
|
8 |
FAN F Y, WOODFORD W H, LI Z, et al. Polysulfide flow batteries enabled by percolating nanoscale conductor networks[J]. Nano Letters, 2014, 14(4): 2210-2218.
|
9 |
LUO L W, ZHANG C, XIONG P X, et al. A redox-active conjugated microporous polymer cathode for high-performance lithium/potassium-organic batteries[J]. Science China Chemistry, 2021, 64(1): 72-81.
|
10 |
XIE H Y, HAO Q, JIN H C, et al. Redistribution of Li-ions using covalent organic frameworks towards dendrite-free lithium anodes: A mechanism based on a Galton Board[J]. Science China Chemistry, 2020, 63(9): 1306-1314.
|
11 |
HUANG K, ZHOU P, CHEN H N. Systematic optimization of high-energy-density Li-Se semi-solid flow battery[J]. Energy Technology, 2021, 9(8): doi: 10.1002/ente.202100371.
|
12 |
BI S S, WANG S, YUE F, et al. A rechargeable aqueous manganese-ion battery based on intercalation chemistry[J]. Nature Communications, 2021, 12: 6991.
|
13 |
PENG M K, WANG L, LI L B, et al. Molecular crowding agents engineered to make bioinspired electrolytes for high-voltage aqueous supercapacitors[J]. eScience, 2021, 1(1): 83-90.
|
14 |
李健, 官亦标, 傅凯, 等. 碳纳米管与石墨烯在储能电池中的应用[J]. 化学进展, 2014, 26(7): 1233-1243.
|
|
LI J, GUAN Y B, FU K, et al. Applications of carbon nanotubes and graphene in the energy storage batteries[J]. Progress in Chemistry, 2014, 26(7): 1233-1243.
|
15 |
YAO M J, YUAN Z S, LI S S, et al. Scalable assembly of flexible ultrathin all-in-one zinc-ion batteries with highly stretchable, editable, and customizable functions[J]. Advanced Materials, 2021, 33(10): doi: 10.1002/adma.202008140.
|
17 |
ZHAO M, LI X Y, CHEN X, et al. Promoting the sulfur redox kinetics by mixed organodiselenides in high-energy-density lithium-sulfur batteries[J]. eScience, 2021, 1(1): 44-52.
|
18 |
LIU D Y, YANG L, CHEN Z Y, et al. Ultra-stable Sb confined into N-doped carbon fibers anodes for high-performance potassium-ion batteries[J]. Science Bulletin, 2020, 65(12): 1003-1012.
|
19 |
HE Y N, XU Y F, ZHANG M, et al. Confining ultrafine SnS nanoparticles in hollow multichannel carbon nanofibers for boosting potassium storage properties[J]. Science Bulletin, 2022, 67(2): 151-160.
|
20 |
ZHANG Y, WANG Q R, BI S S, et al. Flexible all-in-one zinc-ion batteries[J]. Nanoscale, 2019, 11(38): 17630-17636.
|
21 |
XU S F, DAI H C, ZHU S L, et al. A branched dihydrophenazine-based polymer as a cathode material to achieve dual-ion batteries with high energy and power density[J]. eScience, 2021, 1(1): 60-68.
|
22 |
LIU Z J, ZHENG F F, XIONG W W, et al. Strategies to improve electrochemical performances of pristine metal-organic frameworks-based electrodes for lithium/sodium-ion batteries[J]. SmartMat, 2021, 2(4): 488-518.
|
23 |
肖思, 谢旭佳, 谢雍基, 等. 锂离子电池硅/石墨烯负极材料的电化学性能[J]. 硅酸盐学报, 2019, 47(9): 1327-1334.
|
|
XIAO S, XIE X J, XIE Y J, et al. Electrochemical performance of silicon/graphene nanocomposites anode materials for lithium-ion batteries[J]. Journal of the Chinese Ceramic Society, 2019, 47(9): 1327-1334.
|
24 |
LIU W P, XU H R, QIN H Q, et al. Rapid coating of asphalt to prepare carbon-encapsulated composites of nano-silicon and graphite for lithium battery anodes[J]. Journal of Materials Science, 2020, 55(10): 4382-4394.
|
25 |
曾子元, 王畅, 万伟华, 等. 复合导电剂对锂离子电池性能的影响[J]. 电池, 2020, 50(3): 245-248.
|
|
ZENG Z Y, WANG C, WAN W H, et al. Effects of mixture conductive agents on the performance of Li-ion battery[J]. Battery Bimonthly, 2020, 50(3): 245-248.
|
26 |
CHUNG W Y, BRAHMA S, HOU S C, et al. Petroleum waste hydrocarbon resin as a carbon source modified on a Si composite as a superior anode material in lithium ion batteries[J]. Materials Chemistry and Physics, 2021, 259: doi: 10.1016/j.matchemphys.2020.124011.
|
27 |
NIE Z W, LIU Y J, YANG L Y, et al. Construction and application of materials knowledge graph based on author disambiguation: Revisiting the evolution of LiFePO4[J]. Advanced Energy Materials, 2021, 11(16): doi: 10.1002/aenm.202003580.
|
28 |
REN S S, DUAN X D, GE F Y, et al. Novel MOF-derived hollow CoFe alloy coupled with N-doped Ketjen Black as boosted bifunctional oxygen catalysts for Zn-air batteries[J]. Chemical Engineering Journal, 2022, 427: doi: 10.1016/j.cej.2021.131614.
|
29 |
NARAYANAN A, MUGELE F, DUITS M H G. Mechanical history dependence in carbon black suspensions for flow batteries: A rheo-impedance study[J]. Langmuir, 2017, 33(7): 1629-1638.
|
30 |
江浩, 李春忠. 表面化学反应控制制备多级结构电极材料及性能[J]. 化工学报, 2015, 66(8): 2872-2877.
|
|
JIANG H, LI C Z. Surface reaction controlled preparation of hierarchical structure nanomaterials and their electrochemical performances[J]. CIESC Journal, 2015, 66(8): 2872-2877.
|
31 |
王其钰, 褚赓, 张杰男, 等. 锂离子扣式电池的组装, 充放电测量和数据分析[J]. 储能科学与技术, 2018, 7(2): 327-344.
|
|
WANG Q Y, CHU G, ZHANG J N, et al. The assembly, charge-discharge performance measurement and data analysis of lithium-ion button cell[J]. Energy Storage Science and Technology, 2018, 7(2): 327-344.
|
32 |
李仲明, 李斌, 冯东, 等. 锂离子电池正极材料研究进展[J]. 复合材料学报, 2022, 39(2): 513-527.
|
|
LI Z M, LI B, FENG D, et al. Research progress of cathode materials for lithium-ion battery[J]. Acta Materiae Compositae Sinica, 2022, 39(2): 513-527.
|
33 |
ZHANG J, LIU X F, WANG J, et al. Different types of pre-lithiated hard carbon as negative electrode material for lithium-ion capacitors[J]. Electrochimica Acta, 2016, 187: 134-142.
|
34 |
CHEN T Q, PAN L K, LIU X J, et al. A comparative study on electrochemical performances of the electrodes with different nanocarbon conductive additives for lithium ion batteries[J]. Materials Chemistry and Physics, 2013, 142(1): 345-349.
|
35 |
高坡, 张彦林, 颜健. 石墨烯/碳纳米管复合导电剂对LiNi1/3Co1/3Mn1/3O2的影响[J]. 电池, 2017, 47(6): 339-342.
|
|
GAO P, ZHANG Y L, YAN J. Effects of graphene/carbon nanotube composite conductive agent to LiNi1/3Co1/3Mn1/3O2[J]. Battery Bimonthly, 2017, 47(6): 339-342.
|