1 |
赵兰, 王国珍. 相变蓄热复合传热强化技术综述[J]. 储能科学与技术, 2022, 11(11): 3534-3547.
|
|
ZHAO L, WANG G Z. Research progress on composite heat transfer enhancement technology of phase change heat storage system[J]. Energy Storage Science and Technology, 2022, 11(11): 3534-3547.
|
2 |
杜昭, 阳康, 舒高, 等. 金属泡沫内石蜡固液相变蓄热/放热实验[J]. 储能科学与技术, 2022, 11(2): 531-537.
|
|
DU Z, YANG K, SHU G, et al. Experimental study on the heat storage and release of the solid-liquid phase change in metal-foam-filled tube[J]. Energy Storage Science and Technology, 2022, 11(2): 531-537.
|
3 |
ZOU D Q, MA X F, LIU X S, et al. Research progress on graphene in phase change materials[J]. Chemical Industry and Engineering Progress, 2017, 36(5): 1743-1754.
|
4 |
刘丽辉, 莫雅菁, 孙小琴, 等. 纳米增强型复合相变材料的传热特性[J]. 储能科学与技术, 2020, 9(4): 1105-1112.
|
|
LIU L H, MO Y J, SUN X Q, et al. Thermal behavior of the nanoenhanced phase change materials[J]. Energy Storage Science and Technology, 2020, 9(4): 1105-1112.
|
5 |
QI D, PU L, SUN F T, et al. Numerical investigation on thermal performance of ground heat exchangers using phase change materials as grout for ground source heat pump system[J]. Applied Thermal Engineering, 2016, 106: 1023-1032.
|
6 |
陈宝明, 张艳勇, 李佳阳. 铝/石蜡复合相变材料蓄热性能的数值模拟[J]. 热科学与技术, 2021, 20(6): 528-536.
|
|
CHEN B M, ZHANG Y Y, LI J Y. Numerical simulation of heat storage performance of aluminum/paraffin composite phase change material[J]. Journal of Thermal Science and Technology, 2021, 20(6): 528-536.
|
7 |
杨慧慧, 曾立, 汤波, 等. 谷电利用复合石蜡蓄热材料的制备及供暖墙体构造实验[J]. 储能科学与技术, 2022, 11(1): 19-29.
|
|
YANG H H, ZENG L, TANG B, et al. Experimental study on an EG/paraffin composite thermal storage material and its feasibility for off-peak power heating utilization[J]. Energy Storage Science and Technology, 2022, 11(1): 19-29.
|
8 |
邓婷婷, 蔡颖玲. 笼屉式水箱中膨胀石墨对石蜡熔化和凝固过程的影响[J]. 储能科学与技术, 2021, 10(1): 190-197.
|
|
DENG T T, CAI Y L. Effect of expanded graphite on the melting and solidification of paraffin in cage water tank[J]. Energy Storage Science and Technology, 2021, 10(1): 190-197.
|
9 |
CLAESSON J, DUNAND A. Heat extraction from the ground by horizontal pipes: A mathematical analysis[M]. Stockholm: Swedish Council for Building Research, 1983
|
10 |
HUBER A, WETTER M. Vertical Borehole Heat Exchanger, EWS Model: TRNSYS Type 451[M]. ZTL-Luzern and Huber Energietechnik-Zvrich, 1997.
|
11 |
曾和义, 刁乃仁, 方肇洪. 竖直埋管地热换热器钻孔内的热阻[J]. 煤气与热力, 2003, 23(3): 134-138.
|
|
ZENG H Y, DIAO N R, FANG Z H. Thermal resistance inside bore-holes of vertical geothermal heat exchangers[J]. Gas & Heat, 2003, 23(3): 134-138.
|
12 |
GUSTAFSSON A M, WESTERLUND L, HELLSTRÖM G. CFD-modelling of natural convection in a groundwater-filled borehole heat exchanger[J]. Applied Thermal Engineering, 2010, 30(6/7): 683-691.
|
13 |
HU P F, ZHA J, LEI F, et al. A composite cylindrical model and its application in analysis of thermal response and performance for energy pile[J]. Energy and Buildings, 2014, 84: 324-332.
|
14 |
ZHANG W K, YANG H X, LU L, et al. Investigation on heat transfer around buried coils of pile foundation heat exchangers for ground-coupled heat pump applications[J]. International Journal of Heat and Mass Transfer, 2012, 55(21/22): 6023-6031.
|
15 |
MAN Y, YANG H X, DIAO N R, et al. Development of spiral heat source model for novel pile ground heat exchangers[J]. HVAC&R Research, 2011, 17(6): 1075-1088.
|
16 |
PARK S, LEE S R, PARK H, et al. Characteristics of an analytical solution for a spiral coil type ground heat exchanger[J]. Computers and Geotechnics, 2013, 49: 18-24.
|
17 |
张永学, 王梓熙, 鲁博辉, 等. 雪花型翅片提高相变储热单元储/放热性能[J]. 储能科学与技术, 2022, 11(2): 521-530.
|
|
ZHANG Y X, WANG Z X, LU B H, et al. Enhancement of charging and discharging performance of a latent-heat thermal-energy storage unit using snowflake-shaped fins[J]. Energy Storage Science and Technology, 2022, 11(2): 521-530.
|
18 |
王君雷, 徐祥贵, 孙通, 等. 一种螺旋翅片式相变储热单元的储热优化模拟[J]. 储能科学与技术, 2021, 10(2): 514-522.
|
|
WANG J L, XU X G, SUN T, et al. Simulation of heat storage process in spiral fin phase change heat storage unit[J]. Energy Storage Science and Technology, 2021, 10(2): 514-522.
|
19 |
LOHRASBI S, MIRY S Z, GORJI-BANDPY M, et al. Performance enhancement of finned heat pipe assisted latent heat thermal energy storage system in the presence of nano-enhanced H2O as phase change material[J]. International Journal of Hydrogen Energy, 2017, 42(10): 6526-6546.
|
20 |
杨卫波, 徐瑞, 杨晶晶, 等. 相变材料回填地埋管换热器热响应特性的数值模拟及试验验证[J]. 流体机械, 2019, 47(7): 72-79, 60.
|
|
YANG W B, XU R, YANG J J, et al. Numerical simulation and experimental validation of the thermal response characteristics of ground heat exchanger with PCM backfill[J]. Fluid Machinery, 2019, 47(7): 72-79, 60.
|
21 |
于明志, 贺泽群, 毛煜东, 等. 地埋管换热器分区运行对地源热泵系统运行经济性影响的模拟研究[J]. 太阳能学报, 2022, 43(1): 205-212.
|
|
YU M Z, HE Z Q, MAO Y D, et al. Influence of ground heat exchanger zoning operation on operation economy of ground source heat pump systems[J]. Acta Energiae Solaris Sinica, 2022, 43(1): 205-212.
|
22 |
唐文龙, 张季, 汪丽娟, 等. 土壤源热泵间歇运行条件下土壤换热特性分析[J]. 兰州工业学院学报, 2022, 29(6): 18-24.
|
|
TANG W L, ZHANG J, WANG L J, et al. Analysis of soil heat transfer characteristics under intermittent operation of ground source heat pump[J]. Journal of Lanzhou Institute of Technology, 2022, 29(6): 18-24.
|
23 |
李启宇. 相变材料回填的地埋管的传热特性研究[D]. 上海: 东华大学, 2014.
|
|
LI Q Y. Study on heat transfer characteristics of buried pipes backfilled with phase change materials[D]. Shanghai: Donghua University, 2014.
|