1 |
LAIN, BRANDON, KENDRICK. Design strategies for high power vs. high energy lithium ion cells[J]. Batteries, 2019, 5(4): 64.
|
2 |
LI M, LU J, CHEN Z W, et al. 30 years of lithium-ion batteries[J]. Advanced Materials, 2018: e1800561.
|
3 |
YANG R X, XIONG R, MA S X, et al. Characterization of external short circuit faults in electric vehicle Li-ion battery packs and prediction using artificial neural networks[J]. Applied Energy, 2020, 260: 114253.
|
4 |
ZENG X Q, LI M, ABD EL-HADY D, et al. Commercialization of lithium battery technologies for electric vehicles[J]. Advanced Energy Materials, 2019, 9(27): 1900161.
|
5 |
顾磊. 锂离子电池在新能源汽车中的应用与发展探讨[J]. 时代汽车, 2021(8): 105-106.
|
|
GU L. Discussion on the application and development of lithium-ion batteries in new energy vehicles[J]. Auto Time, 2021(8): 105-106.
|
6 |
熊凡, 张卫新, 杨则恒, 等. 高比能量锂离子电池正极材料的研究进展[J]. 储能科学与技术, 2018, 7(4): 607-617.
|
|
XIONG F, ZHANG W X, YANG Z H, et al. Research progress on cathode materials for high energy density lithium ion batteries[J]. Energy Storage Science and Technology, 2018, 7(4): 607-617.
|
7 |
CHANG J, HUANG Q Y, GAO Y, et al. Pathways of developing high-energy-density flexible lithium batteries[J]. Advanced Materials, 2021, 33(46): e2004419.
|
8 |
HUANG J D, ZHU Y H, FENG Y, et al. Research progress on key materials and technologies for secondary batteries[J]. Acta Physico-Chimica Sinica, 2022, 38(12): 2208008.
|
9 |
LI J L, FLEETWOOD J, HAWLEY W B, et al. From materials to cell: State-of-the-art and prospective technologies for lithium-ion battery electrode processing[J]. Chemical Reviews, 2022, 122(1): 903-956.
|
10 |
RANA S, KUMAR R, BHARJ R S. Current trends, challenges, and prospects in material advances for improving the overall safety of lithium-ion battery pack[J]. Chemical Engineering Journal, 2023, 463: 142336.
|
11 |
ZHU C, LIU Z Q, WANG J, et al. Novel Co2VO4 anodes using ultralight 3D metallic current collector and carbon sandwiched structures for high-performance Li-ion batteries[J]. Small, 2017, 13(34): 1701260.
|
12 |
LIAO S Y, HUANG X W, RAO Q S, et al. A multifunctional MXene additive for enhancing the mechanical and electrochemical performances of the LiNi0.8Co0.1Mn0.1O2 cathode in lithium-ion batteries[J]. Journal of Materials Chemistry A, 2020, 8(8): 4494-4504.
|
13 |
ZHANG C, PARK S H, SERAL‐ASCASO A, et al. High capacity silicon anodes enabled by MXene viscous aqueous ink[J]. Nature Communications, 2019, 10: 849.
|
14 |
FRITSCH M, COELER M, KUNZ K, et al. Light weight polymer-carbon composite current collector for lithium-ion batteries[J]. Batteries, 2020, 6(4): 60.
|
15 |
YUN J H, HAN G B, LEE Y M, et al. Low resistance flexible current collector for lithium secondary battery[J]. Electrochemical and Solid-State Letters, 2011, 14(8): A116-A119.
|
16 |
DING Y, ZHANG Q, RUI K, et al. Ultrafast microwave activating polarized electron for scalable porous Al toward high-energy-density batteries[J]. Nano Letters, 2020, 20(12): 8818-8824.
|
17 |
JO M S, GHOSH S, JEONG S M, et al. Coral-like yolk–shell-structured nickel oxide/carbon composite microspheres for high-performance Li-ion storage anodes[J]. Nano-Micro Letters, 2019, 11(1): 3.
|
18 |
SA Q N, WANG Y. Ni foam as the current collector for high capacity C-Si composite electrode[J]. Journal of Power Sources, 2012, 208: 46-51.
|
19 |
WANG J Z, DU N, SONG Z Q, et al. Synthesis of nanoporous three-dimensional current collector for high-performance lithium-ion batteries[J]. RSC Advances, 2013, 3(20): 7543-7548.
|
20 |
PHAM M T M, DARST J J, WALKER W Q, et al. Prevention of lithium-ion battery thermal runaway using polymer-substrate current collectors[J]. Cell Reports Physical Science, 2021, 2(3): 100360.
|
21 |
YE Y S, CHOU L Y, LIU Y Y, et al. Ultralight and fire-extinguishing current collectors for high-energy and high-safety lithium-ion batteries[J]. Nature Energy, 2020, 5: 786-793.
|
22 |
汪茹, 刘志康, 严超, 等. 高安全锂离子电池复合集流体的界面强化[J]. 物理化学学报, 2023, 39(2): 87-98.
|
|
WANG R, LIU Z K, YAN C, et al. Interface strengthening of composite current collectors for high-safety lithium-ion batteries[J]. Acta Physico-Chimica Sinica, 2023, 39(2): 87-98.
|
23 |
CHENG F L, YANG W K, LUO X M, et al. Geometrical size effect on tensile properties of ultrathin current collector foils for lithium-ion batteries[J]. Journal of Materials Research, 2022, 37(21): 3708-3719.
|
24 |
LEDERER M, GRÖGER V, KHATIBI G, et al. Size dependency of mechanical properties of high purity aluminium foils[J]. Materials Science and Engineering: A, 2010, 527(3): 590-599.
|
25 |
PAN Z, ZHAO P Y, WEI X Q, et al. Characterization of metal foil in anisotropic fracture behavior with dynamic tests[J]. SAE International Journal of Materials and Manufacturing, 2018, doi: 10.4271/2018-01-0108.
|
26 |
郭斌, 周健, 单德彬, 等. 黄铜箔拉伸屈服强度的尺寸效应[J]. 金属学报, 2008, 44(4): 419-422.
|
|
GUO B, ZHOU J, SHAN D B, et al. Size effects of yield strength of brass foil in tensile test[J]. Acta Metallurgica Sinica, 2008, 44(4): 419-422.
|
27 |
马秀玲, 李永贞, 姚恩东, 等. 不同厚度电解铜箔的组织与性能研究[J]. 稀有金属材料与工程, 2019, 48(9): 2905-2909.
|
|
MA X L, LI Y Z, YAO E D, et al. Microstructure and properties of electrolytic copper foil with different thicknesses[J]. Rare Metal Materials and Engineering, 2019, 48(9): 2905-2909.
|
28 |
王之桐, 王艳飞. 表面毛化铝箔集流体的力学性能[J]. 中国有色金属学报, 2019, 29(6): 1250-1256.
|
|
WANG Z T, WANG Y F. Mechanical property of surface textured aluminum foil as current collector[J]. The Chinese Journal of Nonferrous Metals, 2019, 29(6): 1250-1256.
|
29 |
朱建宇, 冯捷敏, 王宇晖, 等. 锂离子电池用铜箔集流体的力学性能分析[J]. 储能科学与技术, 2014, 3(4): 360-363.
|
|
ZHU J Y, FENG J M, WANG Y H, et al. Mechanical properties of copper current collection foils of Li-ion batteries[J]. Energy Storage Science and Technology, 2014, 3(4): 360-363.
|
30 |
YANG W K, WANG L Y, SONG Z M, et al. Tensile plasticity of miniature specimens for a low alloy steel investigated by digital image correlation technique[J]. Steel Research International, 2021, 92(7): doi: 10.1002/srin.202000685.
|
31 |
于国军, 韩振斌, 赵昭. 聚合物复合铜箔生产技术研究现状及展望[J]. 铜业工程, 2023(2): 101-107.
|
|
YU G J, HAN Z B, ZHAO Z. Research status and prospect of polymer composite copper foil production technology[J]. Copper Engineering, 2023(2): 101-107.
|
32 |
ALI M K M, IBRAHIM K, HAMAD O S, et al. Deposited Indium Tin Oxide (ITO) thin films by dc-magnetron sputtering on Polyethylene Terephthalate substrate (PET)[J]. Romanian Reports of Physics, 2011, 56(5/6): 730-741.
|
33 |
JI D, IM P, SHIN S, et al. Specimen geometry effect on experimental tensile mechanical properties of tough hydrogels[J]. Materials, 2023, 16(2): 785.
|
34 |
ZHAO H Z, YOU Z S, TAO N R, et al. Anisotropic strengthening of nanotwin bundles in heterogeneous nanostructured Cu: Effect of deformation compatibility[J]. Acta Materialia, 2021, 210: 116830.
|
35 |
MIN H G, KANG D J, PARK J H. Comparison of tensile and fatigue properties of copper thin film depending on process method[J]. Applied Sciences, 2020, 10(1): 388.
|
36 |
高梦岩, 王畅鸥, 贾妍, 等. 聚酰亚胺薄膜材料的各向异性导热行为研究与进展[J]. 高分子学报, 2021, 52(10): 1283-1297.
|
|
GAO M Y, WANG C O, JIA Y, et al. Research progress in anisotropic thermal conduction behavior of polyimide films[J]. Acta Polymerica Sinica, 2021, 52(10): 1283-1297.
|
37 |
STAAB G H, GILAT A. High strain rate response of angle-ply glass/epoxy laminates[J]. Journal of Composite Materials, 1995, 29(10): 1308-1320.
|
38 |
何曼君. 高分子物理[M]. 上海: 复旦大学出版社, 2007.
|
|
HE M J. Polymer physics[M]. Shanghai: Fudan University Press, 2007.
|
39 |
王文灏, 叶邦土, 马涛. 拉伸速度对PVC片材拉伸性能的影响[J]. 城市建设理论研究(电子版), 2015(30): 1997-1998.
|
40 |
ZHANG H Z, JIANG Z H, LIAN J S, et al. Strain rate dependence of tensile ductility in an electrodeposited Cu with ultrafine grain size[J]. Materials Science and Engineering: A, 2008, 479(1/2): 136-141.
|