1 |
代云腾, 彭乔, 刘天琪, 等. 适应高电流倍率工况的锂离子电池等效电路模型[J]. 储能科学与技术, 2023, 12(11): 3528-3537. DOI: 10.19799/j.cnki.2095-4239.2023.0447.
|
|
DAI Y T, PENG Q, LIU T Q, et al. Application of equivalent circuit model of lithium-ion batteries to high current rate condition[J]. Energy Storage Science and Technology, 2023, 12(11): 3528-3537. DOI: 10.19799/j.cnki.2095-4239.2023.0447.
|
2 |
YANN LIAW B, NAGASUBRAMANIAN G, JUNGST R G, et al. Modeling of lithium ion cells—A simple equivalent-circuit model approach[J]. Solid State Ionics, 2004, 175(1/2/3/4): 835-839. DOI: 10.1016/j.ssi.2004.09.049.
|
3 |
ZHANG L, WANG S L, STROE D I, et al. An accurate time constant parameter determination method for the varying condition equivalent circuit model of lithium batteries[J]. Energies, 2020, 13(8): 2057. DOI: 10.3390/en13082057.
|
4 |
LAI X, GAO W K, ZHENG Y J, et al. A comparative study of global optimization methods for parameter identification of different equivalent circuit models for Li-ion batteries[J]. Electrochimica Acta, 2019, 295: 1057-1066. DOI: 10.1016/j.electacta.2018.11.134.
|
5 |
龚敏明, 卞景季, 孙丙香, 等. 锂离子电池分数阶等效电路模型低频参数演变规律研究[J]. 重庆理工大学学报(自然科学), 2020, 34(2): 6-14. DOI: 10.3969/j.issn.1674-8425(z).2020.02.002.
|
|
GONG M M, BIAN J J, SUN B X, et al. Study on parameter evolution of fractional order equivalent circuit model for Li-ion batteries in low frequency area[J]. Journal of Chongqing University of Technology (Natural Science), 2020, 34(2): 6-14. DOI: 10.3969/j.issn.1674-8425(z).2020.02.002.
|
6 |
SOLOMON O O, ZHENG W, CHEN J X, et al. State of charge estimation of Lithium-ion battery using an improved fractional-order extended Kalman filter[J]. Journal of Energy Storage, 2022, 49: 104007. DOI: 10.1016/j.est.2022.104007.
|
7 |
ZHANG Q, LI Y, SHANG Y L, et al. A fractional-order kinetic battery model of lithium-ion batteries considering a nonlinear capacity[J]. Electronics, 2019, 8(4): 394. DOI: 10.3390/electronics8040394.
|
8 |
YU P, WANG S L, YU C M, et al. An adaptive fractional-order extended Kalman filtering for state of charge estimation of high-capacity lithium-ion battery[J]. International Journal of Energy Research, 2022, 46(4): 4869-4878. DOI: 10.1002/er.7480.
|
9 |
张梦龙, 凌六一, 宫兵, 等. IAGA辨识分数阶模型与FOAEKF算法的锂电池SOC估计[J]. 电源技术, 2022, 46(6): 638-642. DOI: 10.3969/j.issn.1002-087X.2022.06.014.
|
|
ZHANG M L, LING L Y, GONG B, et al. IAGA for identification of fractional order model and FOAEKF algorithm for lithium battery SOC estimation[J]. Chinese Journal of Power Sources, 2022, 46(6): 638-642. DOI: 10.3969/j.issn.1002-087X.2022.06.014.
|
10 |
李路路, 陶正顺, 潘庭龙, 等. 锂电池分数阶建模及SOC估计策略[J]. 储能科学与技术, 2023, 12(2): 544-551. DOI: 10.19799/j.cnki.2095-4239.2022.0551.
|
|
LI L L, TAO Z S, PAN T L, et al. Research on fractional modeling and SOC estimation strategy for lithium batteries[J]. Energy Storage Science and Technology, 2023, 12(2): 544-551. DOI: 10.19799/j.cnki.2095-4239.2022.0551.
|
11 |
徐鹏跃, 张国玲, 王涛, 等. 分数一阶电路等效模型估计锂离子电池SOC[J]. 电池, 2024, 54(1): 72-76. DOI: 10.19535/j.1001-1579.2024.01.016.
|
|
XU P Y, ZHANG G L, WANG T, et al. Estimation SOC of Li-ion battery by fractional first-order circuit equivalent models[J]. Battery Bimonthly, 2024, 54(1): 72-76. DOI: 10.19535/j.1001-1579.2024.01.016.
|
12 |
WANG Y N, CHEN Y Q, LIAO X Z. State-of-art survey of fractional order modeling and estimation methods for lithium-ion batteries[J]. Fractional Calculus and Applied Analysis, 2019, 22(6): 1449-1479. DOI: 10.1515/fca-2019-0076.
|
13 |
KHALID A, SARWAT A I. Unified univariate-neural network models for lithium-ion battery state-of-charge forecasting using minimized akaike information criterion algorithm[J]. IEEE Access, 2021, 9: 39154-39170. DOI: 10.1109/ACCESS.2021.3061478.
|
14 |
商云龙, 张奇, 崔纳新, 等. 基于AIC准则的锂离子电池变阶RC等效电路模型研究[J]. 电工技术学报, 2015, 30(17): 55-62. DOI: 10.19595/j.cnki.1000-6753.tces.2015.17.006.
|
|
SHANG Y L, ZHANG Q, CUI N X, et al. Research on variable-order RC equivalent circuit model for lithium-ion battery based on the AIC criterion[J]. Transactions of China Electrotechnical Society, 2015, 30(17): 55-62. DOI: 10.19595/j.cnki.1000-6753.tces.2015.17.006.
|
15 |
ZHANG A, BAO S D, GAO F, et al. A novel strong tracking cubature Kalman filter and its application in maneuvering target tracking[J]. Chinese Journal of Aeronautics, 2019, 32(11): 2489-2502. DOI: 10.1016/j.cja.2019.07.025.
|
16 |
YAO Y, LIN J H, ZHANG B C, et al. Improved strong tracking extended Kalman filter for identifying load disturbances and model uncertainties of serial-parallel mechanism[J]. Mechanical Systems and Signal Processing, 2022, 171: 108819. DOI: 10.1016/j.ymssp.2022.108819.
|