储能科学与技术 ›› 2024, Vol. 13 ›› Issue (9): 3299-3306.doi: 10.19799/j.cnki.2095-4239.2024.0174

• 储能测试与评价 • 上一篇    

锂离子电池分数阶可变阻容建模与荷电状态估计

吴胜利1(), 郭琪1, 邢文婷2   

  1. 1.重庆交通大学交通运输学院,重庆 400074
    2.重庆工商大学管理科学与工程学院,重庆 400067
  • 收稿日期:2024-02-29 修回日期:2024-03-28 出版日期:2024-09-28 发布日期:2024-09-20
  • 通讯作者: 吴胜利 E-mail:wushenli20008@163.com
  • 作者简介:吴胜利(1983—)男,博士,副教授,研究方向为电动汽车管理、控制及信号处理,E-mail: wushenli20008@163.com
  • 基金资助:
    国家自然科学基金项目(51705052);国家社会科学基金(23BGL220);重庆市自然科学基金项目(CSTB2024NSCQ-MSX0002);重庆市教委科学技术研究项目(KJZD-K202400807)

Fractional variable resistance-capacitance modeling and state-of-charge estimation of lithium-ion batteries

Shengli WU1(), Qi GUO1, Wenting XING2   

  1. 1.School of Traffic and Transportation, Chongqing Jiaotong University, Chongqing 400074, China
    2.School of Management Science and Engineering, Chongqing Technology and Business University, Chongqing 400067, China
  • Received:2024-02-29 Revised:2024-03-28 Online:2024-09-28 Published:2024-09-20
  • Contact: Shengli WU E-mail:wushenli20008@163.com

摘要:

锂离子电池荷电状态(SOC)的估计对于保障新能源电动汽车稳定、安全地运行至关重要,而高精度的电池模型是SOC估计的基础,但常用的锂离子电池阻容(RC)模型中,存在高阶模型结构复杂、低阶模型近似程度低,以及电池状态突变导致SOC难以精确估计的问题。本文提出一种基于分数微积分理论的锂离子电池分数阶可变阻容(FVOM)模型,通过利用赤池信息量(AIC)准则识别不同SOC时分数阶阻容模型的最优阶数,构建适应不同SOC时的时变阻容电池模型;同时引入衰减因子构建强跟踪分数阶扩展卡尔曼滤波(STF-FEKF)算法,实现电池荷电状态估计,克服历史数据对当前估计值的影响。基于城市道路循环工况(UDDS)等三种不同工况对分数阶扩展卡尔曼滤波(FEKF)算法进行验证。结果表明,在脉冲放电工况下,模型的平均绝对误差(AAE)由0.0197 V降为0.0160 V,其电压误差均小于50 mV,预测精度相对提高了18.8%;同时,改进后的方法使AAE和均方根误差(RMSE)均有所减小,不仅验证了所提方法的有效性,也为提高锂离子电池SOC状态估计精度和计算效率提供了新的思路。

关键词: 赤池信息量准则, 可变阻容模型, 分数阶, 强跟踪

Abstract:

Accurate estimation of the state of charge (SOC) of Lithium-ion (Li-ion) batteries is crucial for the reliable and safe operation of new energy electric vehicles, and a high-precision battery model is fundamental for SOC estimation. Traditional resistance-capacitance (RC) models of Li-ion batteries face several challenges, including the complex structure of the high-order models, the low approximation of the low-order models, and difficulties in accurately estimating the SOC due to abrupt changes in the Li-ion states. This study proposes a fractional variable resistance-capacitance model of Li-ion based on fractional calculus theory. Using the Akachi Information criterion, the optimal order of the fractional RC model was determined for various SOC levels, and a time-varying RC battery model was developed, which was adapted to different SOCs. A strong tracking fractional extended Kalman filter algorithm was constructed by incorporating an attenuation factor, and the SOC of Li-ion was estimated to address the influence of historical data on the current estimated value. The model's performance was validated using the fractional extended Kalman filter algorithm under three different working conditions, including urban road cycle conditions. The findings indicate that the average absolute error (AAE) of the model decreased from 0.0197 to 0.0160 V under pulse discharge conditions, the voltage errors are all less than 50 mV, and the prediction accuracy is relatively improved by 18.8%. The AAE and root mean square error are reduced by the improved approach, which not only verifies the effectiveness of the proposed approach but also provides a new insight for improving the accuracy of SOC estimation and the computation efficiency of Li-ion batteries.

Key words: Akachi information criterion, variable resistance-capacitance model, fractional order, strong tracking

中图分类号: