1 |
呼晓昌. 海上油气田透平发电机余热回收技术应用[J]. 石油石化节能, 2014, 4(11): 14-16. DOI: 10.3969/j.issn.2095-1493.2014.011.006.
|
|
HU X C. Application of waste heat recovery technology of turbine generator in offshore oil and gas fields[J]. Energy Conservation in Petroleum & Petrochemical Industry, 2014, 4(11): 14-16. DOI: 10.3969/j.issn.2095-1493.2014.011.006.
|
2 |
MATSUI N, KUROKAWA F, SHIRAISHI K. Accurate model for power turbine generators as recovery energy[C]//The 11th International Conference on Electrical Machinery and Systems,2008.
|
3 |
庄森垚. 船舶废气透平发电机组建模研究[D]. 大连: 大连海事大学, 2020. DOI: 10.26989/d.cnki.gdlhu.2020.000403.
|
|
ZHUANG S Y. Study on modeling of marine exhaust gas turbine generator set[D]. Dalian: Dalian Maritime University, 2020. DOI: 10.26989/d.cnki.gdlhu.2020.000403.
|
4 |
KRUK-GOTZMAN S, ZIÓŁKOWSKI P, ILIEV I, et al. Techno-economic evaluation of combined cycle gas turbine and a diabatic compressed air energy storage integration concept[J]. Energy, 2023, 266: 126345. DOI: 10.1016/j.energy.2022.126345.
|
5 |
陆涵. 燃气管道压力能用于发电—制冰系统的优化[D]. 广州: 华南理工大学, 2013.
|
|
LU H. Optimization of power generation-ice making system using gas pipeline pressure energy[D]. Guangzhou: South China University of Technology, 2013.
|
6 |
吕达. 天然气管网压力能用于热电系统的技术开发与工程化设计[D]. 广州: 华南理工大学, 2013.
|
|
LÜ D. The pressure energy of natural gas pipeline network can be used in technical development and engineering design of thermoelectric system[D]. Guangzhou: South China University of Technology, 2013.
|
7 |
孙洁. 城市门站压力能回收设备研究应用进展[J]. 煤气与热力, 2010, 30(7): 18-20. DOI: 10.3969/j.issn.1000-4416.2010.07.006.
|
|
SUN J. Research and application progress of facilities recovering pressure energy in city gate station[J]. Gas & Heat, 2010, 30(7): 18-20. DOI: 10.3969/j.issn.1000-4416.2010.07.006.
|
8 |
FARZANEH-GORD M, HASHEMI S, SADI M. Energy destruction in Iran's natural gas pipe line network[J]. Energy Exploration & Exploitation, 2007, 25(6): 393-406. DOI: 10.1260/014459807783791809.
|
9 |
刘析, 林楠. 天然气余压发电的技术应用与发展[J]. 化工管理, 2023(27): 73-75, 112. DOI: 10.19900/j.cnki.ISSN1008-4800.2023.27.019.
|
|
LIU X, LIN N. Technical application and development of natural gas residual pressure power generation[J]. Chemical Engineering Management, 2023(27): 73-75, 112. DOI: 10.19900/j.cnki.ISSN1008-4800.2023.27.019.
|
10 |
张辉. 天然气管网压力能集成利用工艺研究[D]. 广州: 华南理工大学, 2014.
|
|
ZHANG H. Study on integrated utilization technology of pressure energy in natural gas pipeline network[D]. Guangzhou: South China University of Technology, 2014.
|
11 |
安成名. 燃气管道压力能用于发电—制冰技术开发与应用研究[D]. 广州: 华南理工大学, 2013.
|
|
AN C M. Development and application of gas pipeline pressure energy for power generation-ice making technology[D]. Guangzhou: South China University of Technology, 2013.
|
12 |
阎晓如. DMS-2013轮机模拟器中船舶高压电站建模与仿真实现[D]. 大连: 大连海事大学, 2014.
|
|
YAN X R. Modeling and simulation of ship high voltage power station in DMS-2013 marine engine simulator[D]. Dalian: Dalian Maritime University, 2014.
|
13 |
杨菲, 杨德伟. 阀门定位器气动传动系统建模与MATLAB仿真分析[J]. 机械制造, 2016, 54(1): 22-25. DOI: 10.3969/j.issn.1000-4998.2016.01.008.
|
|
YANG F, YANG D W. Modeling and MATLAB simulation analysis of pneumatic transmission system of valve positioner[J]. Machinery, 2016, 54(1): 22-25. DOI: 10.3969/j.issn.1000-4998. 2016.01.008.
|
14 |
张建新. 小型透平燃料伺服系统仿真技术研究[D]. 天津: 天津大学, 2007.
|
|
ZHANG J X. Research on simulation technology of small turbine fuel servo system[D]. Tianjin: Tianjin University, 2007.
|
15 |
HANSEN J F, ADNANES A K, FOSSEN T I. Mathematical modelling of diesel-electric propulsion systems for marine vessels[J]. Mathematical and Computer Modelling of Dynamical Systems, 2001, 7(3): 323-355. DOI: 10.1076/mcmd.7.3.323.3641.
|
16 |
王述彦, 师宇, 冯忠绪. 基于模糊PID控制器的控制方法研究[J]. 机械科学与技术, 2011, 30(1): 166-172. DOI: 10.13433/j.cnki.1003-8728.2011.01.035.
|
|
WANG S Y, SHI Y, FENG Z X. A method for controlling a loading system based on a fuzzy PID controller[J]. Mechanical Science and Technology for Aerospace Engineering, 2011, 30(1): 166-172. DOI: 10.13433/j.cnki.1003-8728.2011.01.035.
|
17 |
张文君, 盛维涛, 袁宇鹏, 等. 智能轮式机器人离散模糊自适应PID控制研究[J]. 制造业自动化, 2015, 37(8): 5-8. DOI: 10.3969/j.issn.1009-0134.2015.08.002.
|
|
ZHANG W J, SHENG W T, YUAN Y P, et al. A research on the discrete fuzzy adaptive PID controller of the intelligent wheeled robot[J]. Manufacturing Automation, 2015, 37(8): 5-8. DOI: 10.3969/j.issn.1009-0134.2015.08.002.
|
18 |
付佳杰. 船舶同步发电机参数自适应数字式励磁调节器研究与设计[D]. 大连: 大连海事大学, 2012.
|
|
FU J J. Research and design of parameter adaptive digital excitation regulator for marine synchronous generator[D]. Dalian: Dalian Maritime University, 2012.
|
19 |
GANİ A, KEÇECİOĞLU Ö F, AÇIKGÖZ H, et al. Simulation study on power factor correction controlling excitation current of synchronous motor with fuzzy logic controller[J]. International Journal of Intelligent Systems and Applications in Engineering, 2016, 4(Special Issue-1): 229-233. DOI: 10.18201/ijisae.2016specialissue-146979.
|
20 |
DETTORI S, IANNINO V, COLLA V, et al. An adaptive Fuzzy logic-based approach to PID control of steam turbines in solar applications[J]. Applied Energy, 2018, 227: 655-664. DOI: 10.1016/j.apenergy.2017.08.145.
|
21 |
STUROV E, RAYUDU R, BADCOCK R A, et al. Rapid synchronization procedure for a synchronous generator employing ballistic trajectory control[C]//2016 IEEE Innovative Smart Grid Technologies-Asia (ISGT-Asia). November 28-December 1, 2016, Melbourne, VIC, Australia. IEEE, 2016: 517-522. DOI: 10.1109/ISGT-Asia.2016.7796438.
|