1 |
张群. 能源网络治理策略研究——我国参与全球能源治理的视角 [D]. 徐州: 中国矿业大学, 2018.
|
|
ZHANG Q. Research on energy network governance strategies from perspective of China's participation in global energy governance[D]. Xuzhou: China University of Mining and Technology, 2018.
|
2 |
GUERRAICHE D, BOUGRIOU C, GUERRAICHE K, et al. Experimental and numerical study of a solar collector using phase change material as heat storage[J]. Journal of Energy Storage, 2020, 27: 101133. DOI: 10.1016/j.est.2019.101133.
|
3 |
MA F, QIN Y. Research progress of phase change materials on heat transfer[J]. Applied Mechanics and Materials, 2013, 456: 456-460. DOI: 10.4028/www.scientific.net/amm.456.456.
|
4 |
LI Z R, HU N, FAN L W. Nanocomposite phase change materials for high-performance thermal energy storage: A critical review[J]. Energy Storage Materials, 2023, 55: 727-753. DOI: 10.1016/j.ensm.2022.12.037.
|
5 |
罗意彬, 段文超, 严景好, 等. 双翅片矩形相变储能单元蓄热性能实验研究[J]. 储能科学与技术, 2024, 13(2): 405-415. DOI: 10.19799/j.cnki.2095-4239.2023.0627.
|
|
LUO Y B, DUAN W C, YAN J H, et al. Experimental study on heat storage performance of a double-fin rectangular phase change energy storage unit[J]. Energy Storage Science and Technology, 2024, 13(2): 405-415. DOI: 10.19799/j.cnki.2095-4239.2023.0627.
|
6 |
严景好, 李杰, 李一鸣, 等. 基于梯度孔隙率金属泡沫的复合相变单元储热性能数值模拟[J]. 储能科学与技术, 2023, 12(8): 2424-2434. DOI: 10.19799/j.cnki.2095-4239.2023.0289.
|
|
YAN J H, LI J, LI Y M, et al. Numerical simulation study on heat storage performance of composite phase-change units based on gradient-porosity metal foam[J]. Energy Storage Science and Technology, 2023, 12(8): 2424-2434. DOI: 10.19799/j.cnki.2095-4239.2023.0289.
|
7 |
BABAEI H, KEBLINSKI P, KHODADADI J M. Molecular dynamics study of the interfacial thermal conductance at the graphene/paraffin interface in solid and liquid phases[C]//Volume 4: Heat and Mass Transfer Under Extreme Conditions; Environmental Heat Transfer; Computational Heat Transfer; Visualization of Heat Transfer; Heat Transfer Education and Future Directions in Heat Transfer; Nuclear Energy. July 14-19, 2013. Minneapolis, Minnesota, USA. American Society of Mechanical Engineers, 2013. DOI: 10.1115/ht2013-17478.
|
8 |
LI J, YANG H T, PENG Z A, et al. Experimental and numerical investigation on the cold harvest of composite phase change materials for building energy conservation[J]. Journal of Energy Storage, 2024, 78: 110108. DOI: 10.1016/j.est.2023.110108.
|
9 |
FAN L W, FANG X, WANG X, et al. Effects of various carbon nanofillers on the thermal conductivity and energy storage properties of paraffin-based nanocomposite phase change materials[J]. Applied Energy, 2013, 110: 163-172. DOI: 10.1016/j.apenergy.2013.04.043.
|
10 |
LIN Y X, JIA Y T, ALVA G, et al. Review on thermal conductivity enhancement, thermal properties and applications of phase change materials in thermal energy storage[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 2730-2742. DOI: 10.1016/j.rser.2017.10.002.
|
11 |
POMERANTSEVA E, BONACCORSO F, FENG X L, et al. Energy storage: The future enabled by nanomaterials[J]. Science, 2019, 366(6468): eaan8285. DOI: 10.1126/science.aan8285.
|
12 |
GAO H L, ZHU Y B, MAO L B, et al. Super-elastic and fatigue resistant carbon material with lamellar multi-arch microstructure [J]. Nature Communications, 2016. DOI: 10.1038/ncomms12920.
|
13 |
AL-AHMED A, SARı A, ABU JAFAR MAZUMDER M, et al. Thermal energy storage and thermal conductivity properties of octadecanol-MWCNT composite PCMs as promising organic heat storage materials[J]. Scientific Reports, 2020, 10(1): 9168. DOI: 10.1038/s41598-020-64149-3.
|
14 |
CHEN X, CHENG P, TANG Z D, et al. Carbon-based composite phase change materials for thermal energy storage, transfer, and conversion[J]. Advanced Science, 2021, 8(9): 2001274. DOI: 10.1002/advs.202001274.
|
15 |
卜路霞, 王春杰, 尹立辉, 等. 硝酸氧化对多壁碳纳米管的表面修饰及其分散性[J]. 电镀与精饰, 2018, 40(6): 10-13. DOI: 10.3969/j.issn.1001-3849.2018.06.003.
|
|
BU L X, WANG C J, YIN L H, et al. Surface modification of multi-walled carbon nanotubes by nitric acid oxidation and their dispersion[J]. Plating and Finishing, 2018, 40(6): 10-13. DOI: 10.3969/j.issn.1001-3849.2018.06.003.
|
16 |
郑艳彬, 姜志刚, 朱品文. 洋葱碳的制备与应用研究进展[J]. 无机材料学报, 2015, 30(8): 793-801. DOI: 10.15541/jim20140646.
|
|
ZHENG Y B, JIANG Z G, ZHU P W. Development on the preparation and application of onion-like carbon[J]. Journal of Inorganic Materials, 2015, 30(8): 793-801. DOI: 10.15541/jim20140646.
|
17 |
VINDHYASARUMI A, ANJALI K P, SETHULEKSHMI A S, et al. A comprehensive review on recent progress in carbon nano-onion based polymer nanocomposites[J]. European Polymer Journal, 2023, 194: 112143. DOI: 10.1016/j.eurpolymj.2023.112143.
|
18 |
陈轩. 含纳米颗粒相变复合储能材料的强化传热机理与工艺研究[D]. 哈尔滨: 哈尔滨工程大学, 2016.
|
|
CHEN X. Study on heat transfer enhancement mechanism and technology of phase change composite energy storage materials containing nanoparticles[D]. Harbin: Harbin Engineering University, 2016.
|
19 |
肖弘毅,龚玮,杨震,等.纳米铜粉/石蜡复合相变储能材料的分散稳定性[C]//中国高等教育学会工程热物理专业委员会.高等学校工程热物理第十九届全国学术会议论文集.清华大学热能工程系, 2013: 9.
|
20 |
吴学红, 王强伟, 王凯, 等. 纳米粒子强化有机复合相变材料的热物性及其应用研究进展[J]. 化工新型材料, 2021, 49(4): 40-45.
|
|
WU X H, WANG Q W, WANG K, et al. Review on thermophysical property and application of organic composite phase change material enhanced by nano-particle[J]. New Chemical Materials, 2021, 49(4): 40-45.
|
21 |
SHAO X F, LIN J C, TENG H R, et al. Hydroxyl group functionalized graphene oxide nanosheets as additive for improved erythritol latent heat storage performance: A comprehensive evaluation on the benefits and challenges[J]. Solar Energy Materials and Solar Cells, 2020, 215: 110658. DOI: 10.1016/j.solmat.2020.110658.
|
22 |
CHEN L J, ZOU R Q, XIA W, et al. Electro- and photodriven phase change composites based on wax-infiltrated carbon nanotube sponges[J]. ACS Nano, 2012, 6(12): 10884-10892. DOI: 10.1021/nn304310n.
|