储能科学与技术 ›› 2023, Vol. 12 ›› Issue (12): 3818-3835.doi: 10.19799/j.cnki.2095-4239.2023.0726

• 复合储热专辑 • 上一篇    下一篇

超低温-高温跨温区相变材料制备及物性调控综述

折晓会1,2(), 王星宇1, 郭晓龙1, 刘艺炫3, 王家蕴1, 韩鹏1,2, 任晓芬1,2, 赵学敏1,2()   

  1. 1.石家庄铁道大学机械工程学院,低温能量转换、存储与输运研究中心,河北 石家庄 050043
    2.河北省储能产业技术研究院,河北 石家庄 050000
    3.河北工程大学能源与环境工程学院,河北 邯郸 056038
  • 收稿日期:2023-10-17 修回日期:2023-10-31 出版日期:2023-12-05 发布日期:2023-12-09
  • 通讯作者: 赵学敏 E-mail:shexh19@hotmail.com;xmzhao@stdu.edu.cn
  • 作者简介:折晓会(1987—),男,博士,教授,研究方向为新能源、储能,E-mail:shexh19@hotmail.com
  • 基金资助:
    河北省自然科学基金优秀青年科学基金项目(E2022210022)

A review on the preparation of ultra-low-temperaturehigh-temperatureand cross-temperature zone phase change materials and the regulation of physical properties

Xiaohui SHE1,2(), Xingyu WANG1, Xiaolong GUO1, Yixuan LIU3, Jiayun WANG1, Peng Han1,2, Xiaofen REN1,2, Xuemin ZHAO1,2()   

  1. 1.Low Temperature Energy Conversion, Storage and Transportation Research Center, School of Mechanical Engineering, Shijiazhuang Tiedao University, Shijiazhuang 050043, Hebei, China
    2.Hebei Energy Storage Industry and Technology Research Institute, Shijiazhuang 050000, Hebei, China
    3.School of Energy and Environmental Engineering, Hebei University of Engineering, Handan 056038, Hebei, China
  • Received:2023-10-17 Revised:2023-10-31 Online:2023-12-05 Published:2023-12-09
  • Contact: Xuemin ZHAO E-mail:shexh19@hotmail.com;xmzhao@stdu.edu.cn

摘要:

相变储能技术利用相变材料在相变过程中释放或吸收潜热的特性,将能量以潜热的形式储存或释放。其具有高能量密度、长寿命、高功率的优势,在电动汽车、可再生能源储存、电网调峰、智能电网方面具有广泛应用前景,为能源转型和高效能源利用提供了一种可行的解决方案。本文通过对相关文献的探讨,综述了不同温区相变材料的优缺点以及应用领域,包括超低温区(-190~-50 ℃)、低温区(-50~0 ℃)、普温区(0~100 ℃)和高温区(100~700 ℃)。针对相变材料性能改善,阐述了导热系数提升、过冷度降低、相变温度调控、循环稳定性提高等方法。此外,对于复合相变材料的制备方法,介绍了微胶囊化、浸渍法、溶胶-凝胶法和超声波法,并对后三者的不足进行阐述和说明。最后,对于相变材料的未来应用进行了展望,为相变储能技术在能源储存领域的进一步研究提供了参考和指导。

关键词: 相变材料, 相变储能, 物性调控, 制备方法

Abstract:

Phase change energy storage technology harnesses the unique properties of phase change materials to release or absorb latent heat during phase transitions, enabling energy storage in the form of latent heat. This technology holds promising applications in electric vehicles, renewable energy storage, grid peaking, and smart grids owing to its high energy density, extended lifespan, and high power. It presents a viable solution for energy transition and efficient energy utilization. This paper delves into the advantages, disadvantages, and application scopes of phase change materials within various temperature zones: ultra-low (-190 ℃ to -50 ℃), low (-50 ℃ to 0 ℃), general (0 ℃ to 100 ℃), and high (100 ℃ to 700 ℃) temperatures. This categorization is based on an exploration of the pertinent literature. To enhance phase change material properties, methods including thermal conductivity enhancement, subcooling reduction, phase change temperature regulation, and improvement of cycling stability are discussed in this study. Moreover, it examines the preparation methods of composite phase change materials, introducing microencapsulation, impregnation, sol-gel, and ultrasonic methods, while elucidating the drawbacks of the latter three methods. Finally, it envisions potential future applications of phase change materials, aiming to serve as a reference and guide for further research in the domain of energy storage using phase change energy storage technology.

Key words: phase change material, phase change energy storage, physical regulation, preparation method

中图分类号: