储能科学与技术 ›› 2023, Vol. 12 ›› Issue (12): 3818-3835.doi: 10.19799/j.cnki.2095-4239.2023.0726
折晓会1,2(), 王星宇1, 郭晓龙1, 刘艺炫3, 王家蕴1, 韩鹏1,2, 任晓芬1,2, 赵学敏1,2()
收稿日期:
2023-10-17
修回日期:
2023-10-31
出版日期:
2023-12-05
发布日期:
2023-12-09
通讯作者:
赵学敏
E-mail:shexh19@hotmail.com;xmzhao@stdu.edu.cn
作者简介:
折晓会(1987—),男,博士,教授,研究方向为新能源、储能,E-mail:shexh19@hotmail.com;
基金资助:
Xiaohui SHE1,2(), Xingyu WANG1, Xiaolong GUO1, Yixuan LIU3, Jiayun WANG1, Peng Han1,2, Xiaofen REN1,2, Xuemin ZHAO1,2()
Received:
2023-10-17
Revised:
2023-10-31
Online:
2023-12-05
Published:
2023-12-09
Contact:
Xuemin ZHAO
E-mail:shexh19@hotmail.com;xmzhao@stdu.edu.cn
摘要:
相变储能技术利用相变材料在相变过程中释放或吸收潜热的特性,将能量以潜热的形式储存或释放。其具有高能量密度、长寿命、高功率的优势,在电动汽车、可再生能源储存、电网调峰、智能电网方面具有广泛应用前景,为能源转型和高效能源利用提供了一种可行的解决方案。本文通过对相关文献的探讨,综述了不同温区相变材料的优缺点以及应用领域,包括超低温区(-190~-50 ℃)、低温区(-50~0 ℃)、普温区(0~100 ℃)和高温区(100~700 ℃)。针对相变材料性能改善,阐述了导热系数提升、过冷度降低、相变温度调控、循环稳定性提高等方法。此外,对于复合相变材料的制备方法,介绍了微胶囊化、浸渍法、溶胶-凝胶法和超声波法,并对后三者的不足进行阐述和说明。最后,对于相变材料的未来应用进行了展望,为相变储能技术在能源储存领域的进一步研究提供了参考和指导。
中图分类号:
折晓会, 王星宇, 郭晓龙, 刘艺炫, 王家蕴, 韩鹏, 任晓芬, 赵学敏. 超低温-高温跨温区相变材料制备及物性调控综述[J]. 储能科学与技术, 2023, 12(12): 3818-3835.
Xiaohui SHE, Xingyu WANG, Xiaolong GUO, Yixuan LIU, Jiayun WANG, Peng Han, Xiaofen REN, Xuemin ZHAO. A review on the preparation of ultra-low-temperature, high-temperature, and cross-temperature zone phase change materials and the regulation of physical properties[J]. Energy Storage Science and Technology, 2023, 12(12): 3818-3835.
表2
超低温有机相变材料"
材料名称 | 材料类型 | 相变温度/K | 相变潜热 /(kJ/kg) | 导热系数 /[W/(m·K)] | 密度/(kg/m³) | 比热容/[J/(kg·K)] |
---|---|---|---|---|---|---|
C3H8(丙烷) | 固液-有机 | -186.67 | 79.6 | 0.21~0.13(l) (-186.67~-42.12) | 732~581(l) (-186.67~-42.12) | 1.87~2.25(l) (-186.67~-42.12) |
C4H8(1-丁烯) | 固液-有机 | -185.35 | 68.58 | 0.22~0.13(l) (-137.25~-0.49) | 734.1~581(l) (-137.25~-0.49) | 1.97~2.31(l) (-137.25~-0.49) |
C3H6(丙烯) | 固液-有机 | -185.15 | 71.29 | 0.18~0.15(l) (-173.15~-47.69) | 754.9~609.1(l) (-173.15~-47.69) | 0.85~1.29(s)(-223~-193) 1.81~2.18(l)(-173.15~-47.69) |
CH4(甲烷) | 固液-有机 | -182.5 | 58.43 | 0.21~0.18(l) (-181.46~161.48) | 450~422(l) (-181.46~161.48) | 3.37~3.48(l)(-181.46~161.48) |
C5H12(异戊烷) | 固液-有机 | -160.15 | 71.1 | 0.187~0.117(l) (-160~0) | 787.8~639.9(l) (-160~0) | 1.87~2.21(l)(-160~0) |
C6H14(2-甲基戊烷) | 固液-有机 | -153.15 | 72.76 | 0.144~0.114(l) (-153~0) | 807~671(l) (-153~0) | 1.77~2.12(l)(-153~0) |
C5H8(异戊二烯) | 固液-有机 | -142.15 | 72.22 | 0.18~0.13(l) (-143~0) | 854~843(s) (-170~-158) | 0.95~1.08(s)(-174~-158) 1.8~2.1(l)(-143~0) |
C2H6O(二甲醚) | 固液-有机 | -141.5 | 107.23 | 0.24~0.18(l) (-123~25) | 753(l) (-25) | 2.22(l)(-33) |
C4H10(丁烷) | 固液-有机 | -137.15 | 80.2 | 0.18~0.12(l) (-138~-1) | 735~602(l) (-138~-1) | 1.97~2.31(l)(-138~-1) |
C5H12(戊烷) | 固液-有机 | -129.75 | 116.43 | 0.173~0.121(l) (-123~0) | 756~645(l) (-123~0) | 1.97~2.21(l)(-123~0) |
C3H6(环丙烷) | 固液-有机 | -127.15 | -129.28 | 0.136(l) (-37) | 733~678(l)(-79~-34) | 1.93(l) (-33) |
C2H6O(乙醇) | 固液-有机 | -114.35 | 108.53 | 0.167(l) (25) | 826~807(l) (-25~0) | 1.02~1.38(s)(-173~-123) 2.02~2.27(l)(-25~0) |
CH3OH(甲醇) | 固液-有机 | -97.15 | 99.25 | 0.210~0.206 | 904~810 | 2.20~2.40 |
C6H14(正己烷) | 固液-有机 | -95.15 | 151.78 | 0.156~0.135 | 760~677 | 1.88~2.15 |
C5H10(环戊烷) | 固液-有机 | -93.95 | 8.56 | 0.143 | 751 | 1.42~1.69 |
CH3NH2(甲胺) | 固液-有机 | -93.15 | 197.38 | 0.219 | 700 | 3.19~3.26 |
C7H16(正庚烷) | 固液-有机 | -90.55 | 140.12 | 0.156~0.138 | — | 1.96~2.15 |
C4H6O(甲基乙基甲酮) | 固液-有机 | -86.65 | 177.05 | 0.17~0.15 | 826 | 2.07~2.16 |
E-65 | 固液-有机 | -65 | 240 | — | — | — |
C8H18(正辛烷) | 固液-有机 | -56.85 | 181.57 | 0.15~0.13 | 761~718 | 2.02~2.14 |
C6H12O(3-己酮) | 固液-有机 | -55.65 | 134.5 | 0.17~0.16 | 833 | 2.05~2.12 |
C6H10O2(2-己酮) | 固液-有机 | -55.45 | 148.7 | 0.16~0.15 | 830 | 2.02~2.08 |
C9H20(正壬烷) | 固液-有机 | -53.65 | 117 | 0.15~0.13 | 773~734 | 1.99~2.12 |
CH4(甲烷) | 液气-有机 | -161.48 | 510.83 | 0.012~0.003(g)(-161.48~0) | 1.82~0.72(g) (-161.48~0) | 2.22~2.18(g) (-161.48~0) |
CH3CH3(乙烷) | 液气-有机 | -88 | 489 | 0.25~0.17 | 641~544 | 2.33~2.43 |
C2H2(乙炔) | 液气-有机 | -84.15 | 144 | 0.02 | 764.3~760.2 | 1.37 |
表3
超低温无机相变材料"
材料名称 | 材料类型 | 相变温度/K | 相变潜热/(kJ/kg) | 导热系数/[W/(m·K)] | 密度/(kg/m³) | 比热容/[J/(kg·K)] |
---|---|---|---|---|---|---|
E-90 | 固液-共晶 | -90 | 90 | — | — | — |
氯化氢+水 | 固液-共晶 | -86 | 74 | — | 24.8∶75.2(质量比) | — |
E-78 | 固液-共晶 | -78 | 115 | — | — | — |
E-75 | 固液-共晶 | -75 | 102 | — | — | — |
24% LiCl | 固液-共晶 | -67 | 36.26(kJ/mol) | — | — | — |
ZnCl2水溶液(51%) | 固液-共晶 | -62 | 116.84 | — | 51∶49(质量比) | — |
E-62 | 固液-共晶 | -62 | 180 | — | — | — |
E-60 | 固液-共晶 | -60 | 172 | — | — | — |
FeCl3水溶液(33.1%) | 固液-共晶 | -55 | 155.52 | — | 33.1∶66.9(质量比) | — |
氯化钙+水(29.8%) | 固液-共晶 | -55 | 165 | — | 29.8∶70.2(质量比) | — |
NH3(氨气) | 固液-无机 | -78 | 332 | — | 728~682 | — |
O2 | 液气-无机 | -182.96 | 213.06 | 0.008~0.025(g)(-182.96~0) | 4.47~1.43(g) (-182.96~0) | 0.971~0.917(g) (-182.96~0) |
NF3(三氟化氮) | 液气-无机 | -128.95 | 162.71 | — | 1776~1538(l)(-183~-129) 6.24~3.19(g)(-129~0) | 1~1.02(l)(-183~-129) 0.56~0.72(g)(-129~0) |
CO2(二氧化碳) | 液气-无机 | -78 | 574 | — | 1562 | — |
表4
低温相变材料"
名称 | 类型 | 相变 温度/℃ | 相变潜热 /(kJ/kg) | 导热系数 /[W/(m·K)] | 密度(组分比) /(kg/m³) | 比热容 /[J/(kg·K)] | 腐蚀性 |
---|---|---|---|---|---|---|---|
30.5% CaCl2 | 共晶 | -49.5 | 76.81 | — | 30.5%(质量比) | — | — |
CuCl2 水溶液(29.8%) | 共晶 | -40 | 166.17 | — | 29.8%(体积比) | — | — |
汞 | 无机物 | -39 | 11.4 | — | 13590 | — | — |
3-庚酮 C7H14O | 有机物 | -37.1 | 153.5 | 0.15~0.14 | 822 | — | — |
K2CO3水溶液(39.6%) | 共晶 | -36.5 | 165.36 | — | 39.6%(体积比) | — | — |
2-庚酮 C7H14O | 有机物 | -35 | 172.6 | 0.15~0.14 | 851~834 | — | — |
MgCl2水溶液(17.1%) | 共晶 | -33.6 | 221.86 | — | 17.1%(体积比) | — | — |
21.01% MgCl2 | 共晶 | -33.5 | 36.3 | — | 21.01%(质量比) | — | — |
Al(NO3)3 水溶液 (30.5%) | 共晶 | -30.6 | 207.63 | — | 30.5%(体积比) | — | — |
癸烷 C10H22 | 有机物 | -29.7 | 202 | 0.1311 | 735 | 2220 | — |
硝酸镁Mg(NO3)2+水 | 共晶 | -29 | 187 | — | 34.6∶65.4(质量比) | — | — |
Mg(NO3)2 水溶液(34.6%) | 共晶 | -29 | 186.93 | — | 34.6%(体积比) | — | — |
Zn(NO3)2 水溶液(39.4%) | 共晶 | -29 | 169.88 | — | 39.4%(体积比) | — | 有 |
NH4F水溶液(32.3%) | 共晶 | -28.1 | 187.83 | — | 32.3%(体积比) | — | 有 |
NaBr水溶液(40.3%) | 共晶 | -28 | 175.69 | — | 40.3%(体积比) | — | — |
乙二醇+氯化铵+水 | 共晶 | -23 | 176 | — | 10∶15∶75(质量比) | — | 有 |
27.9% NaCl | 共晶 | -23 | 26.1 | — | 27.9%(体积比) | — | — |
KF水溶液(21.5%) | 共晶 | -21.6 | 227.13 | — | 21.5%(体积比) | — | 有 |
NaCl水溶液(22.4%) | 共晶 | -21.2 | 228.14 | — | 22.4%(体积比) | — | — |
共晶组成的氯化钠水溶液(23.3%) | 共晶 | -21.1 | 246.6 | — | 23.3 %(质量比) | — | — |
氯化钠NaCl+水 | 共晶 | -21 | 228 | — | 22.4∶77.6(质量比) | — | — |
MgCl2水溶液(25%) | 共晶 | -19.4 | 223.1 | — | 25%(体积比) | — | — |
(NH4)2SO4 水溶液(39.7%) | 共晶 | -18.5 | 187.75 | — | 29.7%(体积比) | — | 有 |
NaNO3水溶液(36.9%) | 共晶 | -17.7 | 187.79 | — | 36.9%(体积比) | — | 有腐蚀性,受猛烈撞击或受热爆炸性分解 |
NH4NO3水溶液(41.2%) | 共晶 | -17.35 | 186.29 | — | 41.2%(体积比) | — | 有 |
Ca(NO3)2 水溶液(35%) | 共晶 | -16 | 199.35 | — | 35%(体积比) | — | — |
NH4Cl水溶液(19.5%) | 共晶 | -16 | 248.44 | — | 19.5%(体积比) | — | 有 |
甘油C3H8O3+醋酸钠+水 | 共晶 | -14 | 172 | — | 10∶10∶80(质量比) | — | — |
K2HPO4水溶液(36.8%) | 共晶 | -13.5 | 197.79 | — | 36.8%(体积比) | — | — |
氯化钾+水 | 共晶 | -11 | 253 | — | 19.5∶80.5(质量比) | — | — |
Na2S2O3 水溶液(30%) | 共晶 | -11 | 219.86 | — | 30%(体积比) | — | — |
KCl水溶液 (19.5%) | 共晶 | -10.7 | 253.18 | — | 19.5%(体积比) | — | — |
MnSO3水溶液(32.2%) | 共晶 | -10.5 | 213.07 | — | 32.2%(体积比) | — | — |
二乙二醇C4H10O3 | 有机物 | -10 | 247 | — | 1118 | — | — |
NaH2PO4 水溶液(23.4%) | 共晶 | -9.9 | 214.25 | — | 23.4%(体积比) | — | — |
十二烷+十三烷 | 有机物 | -9.7 | 159 | — | 60∶40(体积比) | — | — |
正十二烷 C12H26 | 有机物 | -9.6 | 216 | 0.134 | 745.64 | 2039 | — |
十二烷+十三烷 | 有机物 | -9.1 | 145 | — | 50∶50(体积比) | — | — |
十二烷+十三烷 | 有机物 | -8 | 147 | — | 40∶60(体积比) | — | — |
BaCl2水溶液(22.5%) | 共晶 | -7.8 | 246.44 | — | 22.5%(体积比) | — | — |
22.1% BaCl2 | 共晶 | -7.7 | 10.2 | — | 22.1 %(质量比) | — | — |
三乙二醇 C6H14O4 | 有机物 | -7 | 247 | — | 1200 | — | — |
ZnSO3水溶液(27.2%) | 共晶 | -6.5 | 235.75 | — | 27.2%(体积比) | — | — |
Sr(NO3)2水溶液(24.5%) | 共晶 | -5.75 | 243.15 | — | 24.5%(体积比) | — | — |
十二烷+十三烷 | 有机物 | -5.4 | 126 | — | 20∶80(体积比) | — | — |
KHCO3水溶液(16.95%) | 共晶 | -5.4 | 268.54 | — | 16.95%(体积比) | — | — |
十三烷 C13H28 | 有机物 | -5.35 | 154 | 0.131 | 750 | 1979 | — |
18.63% MgSO4 | 共晶 | -4.8 | 84.96 | — | 18.63%(质量比) | — | — |
NiSO4水溶液(20.6%) | 共晶 | -4.15 | 258.61 | — | 20.6%(体积比) | — | — |
硫酸钠+水 | 共晶 | -4 | 285 | — | 12.7∶87.3(质量比) | — | — |
乳酸钙+氯化铵 | 共晶 | -4 | 265 | — | 50∶50(质量比) | — | 有 |
MgSO4水溶液(19%) | 共晶 | -3.9 | 264.42 | — | 19%(体积比) | — | — |
Na2SO4水溶液(12.7%) | 共晶 | -3.55 | 284.95 | — | 12.7%(体积比) | — | — |
NaF水溶液(3.9%) | 共晶 | -3.5 | 314.09 | — | 3.9%(体积比) | — | 有 |
山梨酸钾C6H7O2K+氯化钾 | 共晶 | -3 | 255 | — | 85.72∶14.28(质量比) | — | — |
KNO3水溶液(9.7%) | 共晶 | -2.8 | 296.02 | — | 9.7%(体积比) | — | — |
Na2CO3水溶液(5.9%) | 共晶 | -2.1 | 310.23 | — | 5.9%(体积比) | — | 有 |
FeSO4水溶液(13%) | 共晶 | -1.8 | 286.81 | — | 13%(体积比) | — | — |
CuSO4水溶液(11.9%) | 共晶 | -1.6 | 290.91 | — | 11.9%(体积比) | — | — |
十三烷+十四烷 | 有机物 | -1.5 | 110 | — | 80∶20(体积比) | — | — |
4.03% Na2SO4 | 共晶 | -1.2 | 1.07 | — | 4.03%(质量比) | — | — |
十三烷+十四烷 | 有机物 | -0.5 | 138 | — | 60∶40(体积比) | — | — |
冰 | 无机物 | 0 | 333 | 0.598 | 998.75 | 4137 | — |
表6
结晶水合盐的热性能"
材料名称 | 相变温度/℃ | 相变潜热/(kJ/kg) | 导热系数/[W/(m·K)] | 密度/(kg/m³) |
---|---|---|---|---|
H2O | 0 | 333 | 0.61 | 998(液20 ℃) 917(固0 ℃) |
LiClO3·3H2O | 8.1 | 253 | — | 1720 |
ZnCl2·3H2O | 10 | — | — | — |
K2HPO4·6H2O | 13 | — | — | — |
NaOH·5H2O | 15 | — | — | — |
Na2CrO4·10H2O | 18 | — | — | — |
KF·4H2O | 18.5 | 231 | — | 1447(液20 ℃) 1455(固18 ℃) |
Mn(NO3)2·6H2O | 25.8 | 125.9 | — | 1728(液40 ℃) 1759(固5 ℃) |
CaCl2·6H2O | 29 | 187 | 0.54(38.7 ℃) | 1562(32 ℃) 1802(24 ℃) |
LiNO3·3H2O | 30 | 296 | — | — |
Na2SO4·10H2O | 32.4 | 180 | 0.15(液) 0.3(固) | 1460 |
Na2CO3·10H2O | 33 | 246.5 | — | 1442 |
CaBr2·6H2O | 34 | 115.5 | — | 1965(液35 ℃) 2184(固24 ℃) |
Na2HPO4·10H2O | 35 | 280 | 2 | 1522 |
Na2HPO4·12H2O | 36~40 | 256~281 | 1.426 | 1522 |
Zn(NO3)2·6H2O | 36 | 147 | 0.464 | 1828(液35 ℃) 1937(固24 ℃) |
KF·6H2O | 41.4 | — | — | — |
K(CH3COO)·1.5H2O | 42 | — | — | — |
K3PO4·7H2O | 45 | — | — | — |
Zn(NO3)2·4H2O | 45.5 | — | — | — |
Ca(NO3)2·4H2O | 47 | — | — | — |
Ba(OH)2·8H2O | 48 | 265.7 | 0.653(85.7 ℃) 1.225(23 ℃) | 1937(液84 ℃) 2070(固24 ℃) |
Na2HPO3·7H2O | 48 | — | — | — |
MgSO4·7H2O | 48.5 | 202 | — | 1687 |
Zn(NO3)3·2H2O | 54 | — | — | — |
Na2S2O3·5H2O | 48 | 187 | — | 1600 |
Zn(NO3)2·2H2O | 54 | — | — | — |
NaH3COO·3H2O | 58 | 226 | — | 1450 |
Cd(NO3)3·4H2O | 59.5 | — | — | — |
Fe(NO3)·6H2O | 60 | — | — | — |
NaOH | 64.3 | 227.6 | — | 1690 |
Na2P2O4·10H2O | 70 | 184 | — | — |
Ba(OH)2·8H2O | 78 | 267 | 1.255 | 1937(液84 ℃) 2070(固24 ℃) |
Mg(NO3)2·6H2O | 89 | 162 | 0.490(液) 0.611(固) | 1550(液94 ℃) 1636(固25 ℃) |
NH4Al(SO4)2·6H2O | 95 | 269 | — | — |
Al(NO3)2·8H2O | 89 | — | — | — |
表7
非石蜡类有机相变材料的热性能"
材料名称 | 材料类型 | 相变 温度/℃ | 相变潜热 /(kJ/kg) | 导热系数 /[W/(m·K)] | 密度 /(kg/m³) | 比热容 /[kJ/(kg·K)] | 气化点/℃ | 闪点/℃ |
---|---|---|---|---|---|---|---|---|
四氢呋喃 | 有机 | 5 | 280 | — | 890 | — | 66 | 14 |
N-十四烷 | 有机 | 5.5 | 226 | 0.129 | 765.78 | 2.031 | — | — |
甲酸 | 有机 | 7.8 | 247 | 0.193 | 1205.24 | 2.036 | 100 | 69 |
聚丙三醇E400 | 有机 | 8 | 99.6 | 0.185 | 1125 | — | — | — |
二甲基亚砜 | 有机 | 16.5 | 85.7 | — | 1009 | 1.95 | — | 95 |
聚丙三醇E600 | 有机 | 22 | 127.2 | 0.187 | 1126 | — | — | — |
萘 | 有机 | 80 | 147.7 | 0.341 | 1145 | — | — | 78.9 |
N-正十八烷 | 有机 | 27.7 | 243.5 | 0.148(液) 0.190(固) | 785(液) | — | — | — |
865(固) | 2.6(液) 2.14(固) | — | — | — | — | — | — | — |
月桂-棕榈酸(69%∶31%) | 共晶 | 35.2 | 166.3 | — | — | 2.41(液) 1.77(固) | — | — |
月桂酸 | 有机 | 41~43 | 211.6 | 1.6 | 1760(固) | — | — | — |
862 (液) | 2.27(液) 1.76(固) | 299 | >110 | — | — | — | — | — |
棕榈酸 | 有机 | 57.8~61.8 | 185.4 | 0.162(液) | 850(液) | — | — | — |
989 (固) | 340 | 154 | — | — | — | — | — | |
聚乙二醇900 | 有机 | 34 | 150.5 | 0.188(液) 0.188(固) | 1100(液) | — | — | — |
硬脂酸 | 有机 | 41~43 | 211.6 | 1.60(固) | 862(液) 1007(固) | 2.27(液) 1.76(固) | 361 | — |
肉豆蔻酸 | 有机 | 52.2 | 182.6 | 862 | 250 | 144.8 |
表8
商用相变材料的热性能"
名称 | 类型 | 相变温度/℃ | 相变焓/(kJ/kg) | 导热系数/[W/(m·K)] | 密度/(kg/m³) | 比热容/[kJ/(kg·K)] | 体积膨胀比/% | 闪点/℃ |
---|---|---|---|---|---|---|---|---|
RTO | 有机 | 0 | 175 | 0.2 | 770(液) 880(固) | 2 | 12.5 | 110 |
A2 | 有机 | 1 | 230 | — | — | — | — | — |
ATP2 | 有机 | 2 | 215 | — | — | — | — | — |
RT2 HC | 有机 | 2 | 200 | 0.2 | 770(液) 880(固) | 2 | 12.5 | >100 |
RT3 HC | 有机 | 3 | 190 | 0.2 | 770(液) 880(固) | 2 | 12.5 | >110 |
A3 | 有机 | 3 | 230 | — | — | — | — | — |
RT4 | 有机 | 4 | 175 | 0.2 | 770(液) 880(固) | 2 | 12.5 | 110 |
A4 | 有机 | 4 | 235 | — | — | — | — | — |
Pure Temp4 | 有机 | 5 | 187 | — | — | — | — | — |
RT5 | 有机 | 5 | 180 | 0.2 | 770(液) 880(固) | 2 | 12.5 | 113 |
RT8 | 有机 | 8 | 175 | 0.2 | 770(液) 880(固) | 2 | 14 | 116 |
RT8HC | 有机 | 8 | 190 | 0.2 | 770(液) 880(固) | 2 | 12.5 | 120 |
RT10 | 有机 | 10 | 165 | 0.2 | 770(液) 880(固) | 2 | 12.5 | 123 |
RT10HC | 有机 | 10 | 200 | 0.2 | 770(液) 880(固) | 2 | 12.5 | 130 |
RT11HC | 有机 | 11 | 200 | 0.2 | 770(液) 880(固) | 2 | 12.5 | 130 |
RT12 | 有机 | 12 | 164 | 0.2 | 770(液) 880(固) | 2 | 12.5 | 125 |
RT15 | 有机 | 15 | 155 | 0.2 | 770(液) 880(固) | 2 | 12.5 | 130 |
RT18HC | 有机 | 18 | 260 | 0.2 | 770(液) 880(固) | 2 | 12.5 | 135 |
RT21 | 有机 | 21 | 165 | 0.2 | 770(液) 880(固) | 2 | 12.5 | 140 |
RT21HC | 有机 | 21 | 190 | 0.2 | 770(液) 880(固) | 2 | 14 | 140 |
RT22HC | 有机 | 22 | 190 | 0.2 | 700(液) 760(固) | 2 | 12.5 | >150 |
RT24HC | 有机 | 24 | 200 | 0.2 | 700(液) 800(固) | 2 | 12 | 150 |
RT25HC | 有机 | 25 | 230 | 0.2 | 770(液) 880(固) | 2 | 12.5 | 150 |
RT28HC | 有机 | 28 | 250 | 0.2 | 770(液) 880(固) | 2 | 12.5 | 165 |
RT31 | 有机 | 31 | 165 | 0.2 | 760(液) 880(固) | 2 | 12.5 | 157 |
RT35 | 有机 | 35 | 160 | 0.2 | 770(液) 860(固) | 2 | 12.5 | 170 |
RT35HC | 有机 | 35 | 240 | 0.2 | 770(液) 880(固) | 2 | 12 | 177 |
RT38 | 有机 | 38 | 170 | 0.2 | 750(液) 880(固) | 2 | 12.5 | 165 |
RT42 | 有机 | 42 | 165 | 0.2 | 760(液) 880(固) | 2 | 12.5 | 186 |
RT44HC | 有机 | 44 | 250 | 0.2 | 700(液) 800(固) | 2 | 12.5 | >180 |
RT47 | 有机 | 47 | 160 | 0.2 | 770(液) 880(固) | 2 | 12 | >180 |
RT50 | 有机 | 50 | 160 | 0.2 | 760(液) 880(固) | 2 | 12.5 | >200 |
RT54HC | 有机 | 54 | 200 | 0.2 | 800(液) 850(固) | 2 | — | — |
RT55 | 有机 | 55 | 170 | 0.2 | 770(液) 880(固) | 2 | 14 | >200 |
RT60 | 有机 | 60 | 160 | 0.2 | 770(液) 880(固) | 2 | 12.5 | >200 |
RT62HC | 有机 | 62 | 230 | 0.2 | 840(液) 850(固) | 2 | — | — |
RT65 | 有机 | 65 | 150 | 0.2 | 780(液) 880(固) | 2 | 11.3 | >200 |
RT69HC | 有机 | 69 | 230 | 0.2 | 840(液) 940(固) | 2 | — | — |
RT70HC | 有机 | 70 | 260 | 0.2 | 770(液) 880(固) | 2 | 12.5 | 227 |
RT82 | 有机 | 82 | 170 | 0.2 | 770(液) 880(固) | 2 | 12.5 | >200 |
RT80HC | 有机 | 78 | 220 | 0.2 | 800(液) 900(固) | 2 | — | — |
RT90HC | 有机 | 90 | 170 | 0.2 | 850(液) 950(固) | 2 | — | — |
RT100HC | 有机 | 100 | 180 | 0.2 | 850(液) 1000(固) | 2 | 15 | >250 |
RT100 | 有机 | 100 | 120 | 0.2 | 770(液) 880(固) | 2 | 12.5 | 312 |
表 9
无机盐类相变材料的热物性"
材料名称 | 材料类型 | 相变温度/℃ | 相变潜热/(kJ/kg) | 导热系数/[W/(m·K)] | 密度/(kg/m³) | 比热容/[J/(kg·K)] | 成分 |
---|---|---|---|---|---|---|---|
LiNO3- KNO3 | 无机 | 120 | 151 | — | — | 1050 | 42∶58(摩尔比) |
KNO3-NaNO2- | — | — | — | — | — | — | — |
NaNO3 | 无机 | 142 | 80 | 0.387 | 1791 | 1550 | 53∶40∶7 |
NaNO3-KNO3 | 无机 | 220 | 161 | 0.519 | 1837 | 1495 | 60∶40 |
NaNO3-KNO3 | 无机 | 222 | 117 | — | 1960 | — | 54∶46(摩尔比) |
KNO3-NaNO3 | 无机 | 222 | 117 | — | — | 46∶54(摩尔比) | |
NaNO3-NaOH | 无机 | 240 | 244 | — | 1829 | — | 27∶73(摩尔比) |
NaNO3-NaOH | 无机 | 247 | 158 | — | 1910 | — | 70∶30(摩尔比) |
LiNO3 | 无机 | 254 | 380 | 0.63 | 1724 | — | 100 |
Ba(NO3)2-LiNO3 | 无机 | 253 | 366 | — | 2133 | — | 2.6∶97.4(摩尔比) |
Ca(NO3)2-LiCl | 无机 | 269 | 167 | — | 1868 | — | 40.85∶59.15(摩尔比) |
NaCl-NaNO3- | — | — | — | — | — | — | — |
Na2SO4 | 无机 | 286 | 177 | — | 1936 | — | 8.4∶86.3∶5.3(摩尔比) |
NaCl-NaNO3 | 无机 | 290 | 247 | — | — | 1460 | 50.4∶49.6(摩尔比) |
NaNO3-KNO3 | 无机 | 290 | 170 | — | — | — | 90∶10 |
KNO3 | 无机 | 337 | 99 | 0.48 | 1827 | 1340 | 100 |
Ca(NO3)2 | 无机 | 560 | 145 | 100 | |||
NaNO3 | 无机 | 307 | 182 | 0.58 | 1820 | 1819 | 100 |
LiNO3-Ba(NO3)2 | 无机 | 253 | 368 | — | — | — | 97.4∶2.6(摩尔比) |
Li2CO3-K2CO3- | — | — | — | — | — | — | — |
Na2CO3 | 无机 | 397 | 275 | 2.04 | 2310(25 ℃) | 1690 | 31∶35∶34 |
表10
金属及合金的热物性"
材料名称 | 材料类型 | 相变温度/℃ | 相变潜热/(kJ/kg) | 导热系数/[W/(m·K)] | 密度/(kg/m³) | 比热容/[J/(kg·K)] | 成分 |
---|---|---|---|---|---|---|---|
Li | 金属 | 180.7 | 435 | 84 | 534 | 3580 | 100 |
Mg-Zn | 共熔 | 340 | 185 | — | — | — | 46.3∶53.7 |
Zn-Al | 共熔 | 381 | 138 | — | — | — | 96∶4 |
Al-Si-Sb | 共熔 | 471 | 471 | — | — | — | 86.4∶9.4∶4.2 |
Mg-Al | 合金 | 497 | 285 | — | — | — | 34.65∶65.35 |
Al-Cu-Mg | 共熔 | 506 | 365 | — | — | — | 60.8∶33.2∶6 |
Al-Si-Cu-Mg | 共熔 | 507 | 374 | — | — | — | 64.1∶5.2∶28∶2.2 |
Al-Si-Cu | 共熔 | 525 | 364 | — | — | — | 68.5∶26.5∶26.5 |
Al-Cu | 共熔 | 548 | 372 | — | — | — | 66.92∶33.08 |
Al-Si-Mg | 共熔 | 555 | 485 | — | — | — | 83.14∶11.7∶5.16 |
Al-Si | 合金 | 557 | 498 | — | — | — | 87.76∶12.24 |
Al-Si-Cu | 共熔 | 571 | 406 | — | — | — | 46.3∶4.6∶49.1 |
Mg | 金属 | 650 | 365 | 156 | 1740 | 1270 | 100 |
Al | 金属 | 660 | 398 | 217 | 2700 | 880 | 100 |
Zn-Mg | 共熔 | 342 | 155 | 75 | 2850 | 730 | 51∶49 |
Mg-Al | 共熔 | 497 | 285 | — | 2155 | — | 34.65∶65.35 |
Al-Cu-Mg-Zn | — | 520 | 305 | — | 3140 | 1510(液) 1130(固) | 54∶22∶18∶6 |
Al-Si | 合金 | 576 | 560 | 160 | 2700 | 1038(液) 1741(固) | 88∶12 |
Zn-Cu-Mg | 合金 | 703 | 176 | — | 8670 | 420 | 49∶45∶6 |
Al-Cu-Sb | 共熔 | 545 | 331 | — | 4000 | — | 64.3∶34∶1.7 |
Al-Cu | 共熔 | 548 | 372 | — | 3600 | — | 66.92∶33.08 |
表15
超声波法制备相变材料"
材料 | 实验 | 结果 | 参考文献 |
---|---|---|---|
Na2HPO4∙12H2O | 超声辐照对储热材料Na2HPO4∙12H2O中成核现象的影响 | 在超声辐照下,诱导时间缩短,温度上升速率取决于超声输出 | [ |
水和蔗糖,乙二醇溶液 | 超声波对于-20 ℃下冷却的去离子水和蔗糖在乙二醇溶液中的影响 | 超声波能诱导溶液更易成核 | [ |
水和蔗糖溶液 | 水和蔗糖溶液在超声作用下的成核情况 | 溶液接近成核温度时,很快就发生结晶现象,成核速率大于脱气溶液 | [ |
乳酸钙-氯化铵-水 | 在凝固过程加入超声外场对相变体系凝固特性的影响 | 加入超声场,有利于乳酸钙-氯化铵-水相变体系的性能提高 | [ |
加入TiO2,Al2O3和CuO纳米金属的溶液 | 超声波对添加纳米材料的溶液分散稳定性的影响 | 溶液的稳定性随超声时间和功率的增加而增加 | [ |
1 | 凌浩恕, 何京东, 徐玉杰, 等. 清洁供暖储热技术现状与趋势[J]. 储能科学与技术, 2020, 9(3): 861-868. |
LING H S, HE J D, XU Y J, et al. Status and prospect of thermal energy storage technology for clean heating[J]. Energy Storage Science and Technology, 2020, 9(3): 861-868. | |
2 | 冯一帆, 蒋思炯, 付鑫, 等. 储热技术现状及相变储热材料的研究进展[J]. 信息记录材料, 2023, 24(2): 32-36. |
FENG Y F, JIANG S J, FU X, et al. Current status of heat storage technology and research progress of phase change thermal storage materials[J]. Information Recording Materials, 2023, 24(2): 32-36. | |
3 | LI G, HWANG Y, RADERMACHER R, et al. Review of cold storage materials for subzero applications[J]. Energy, 2013, 51: 1-17. |
4 | 张莉, 赵修文, 李博, 等. 浅谈相变材料的应用研究进展[J]. 化学推进剂与高分子材料, 2021, 19: 24-30. |
5 | 张仁元. 相变材料与相变储能技术[M]. 北京: 科学出版社, 2009. |
6 | 张静, 何伟, 王浩, 等. 石蜡基新型定形相变蓄热材料的热物性分析[J]. 建筑热能通风空调, 2022, 41: 13-15, 59. |
7 | 王诗语, 凌凤香, 孙剑锋, 等. 石蜡复合相变材料的研究进展及其热学性质[J]. 当代化工, 2015, 44: 1598-1601. |
8 | 王若钰, 梁斌, 朱英明, 等. 石蜡基高热导率相变储能材料的制备[J]. 化学试剂, 2023, 45(1): 108-113. |
WANG R Y, LIANG B, ZHU Y M, et al. Preparation of paraffin-based high thermal conductivity phase change energy storage materials[J]. Chemical Reagents, 2023, 45(1): 108-113. | |
9 | QI J, GE Y, LI Q P, et al. Sustainable and cleaner approach for paraffin wax treatment via CO2-induced polarity transformation of switchable solvents[J]. Journal of Cleaner Production, 2023, 396: 136500. |
10 | ZHAO L, LI J Q, DUAN X G, et al. Microencapsulated paraffin with SiO2 and Cu-BTC composite shell as shape-stabilized thermal energy storage materials[J]. Energy and Buildings, 2023, 290: 113102. |
11 | 方桂花, 孙鹏博, 于孟欢, 等. 石蜡相变材料热性能提升研究进展[J]. 应用化工, 2022, 51(8): 2433-2436, 2441. |
FANG G H, SUN P B, YU M H, et al. Research progress in improving thermal properties of paraffin phase change materials[J]. Applied Chemical Industry, 2022, 51(8): 2433-2436, 2441. | |
12 | 孙世平, 李翔, 申月, 等. 无机水合盐相变储能材料研究进展[J]. 化工新型材料, 2023, 51(4): 26-31, 38. |
SUN S P, LI X, SHEN Y, et al. Research progress of inorganic hydrated salt phase change energy storage materials[J]. New Chemical Materials, 2023, 51(4): 26-31, 38. | |
13 | CHEN Z B, ZHANG X L, JI J, et al. A review of the application of hydrated salt phase change materials in building temperature control[J]. Journal of Energy Storage, 2022, 56: 106157. |
14 | HU H Y, JIN X, ZHANG X S. Effect of supercooling on the solidification process of the phase change material[J]. Energy Procedia, 2017, 105: 4321-4327. |
15 | LI Q, LI C, DU Z, et al. A review of performance investigation and enhancement of shell and tube thermal energy storage device containing molten salt based phase change materials for medium and high temperature applications[J]. Applied Energy, 2019, 255: 113806. |
16 | CÁRDENAS B, LEÓN N. High temperature latent heat thermal energy storage: Phase change materials, design considerations and performance enhancement techniques[J]. Renewable and Sustainable Energy Reviews, 2013, 27: 724-737. |
17 | FERNÁNDEZ A I, BARRENECHE C, BELUSKO M, et al. Considerations for the use of metal alloys as phase change materials for high temperature applications[J]. Solar Energy Materials and Solar Cells, 2017, 171: 275-281. |
18 | CHENG P, CHEN X, GAO H Y, et al. Different dimensional nanoadditives for thermal conductivity enhancement of phase change materials: Fundamentals and applications[J]. Nano Energy, 2021, 85: 105948. |
19 | XIAO X, ZHANG P, LI M. Preparation and thermal characterization of paraffin/metal foam composite phase change material[J]. Applied Energy, 2013, 112: 1357-1366. |
20 | HUANG X, LIN Y X, ALVA G, et al. Thermal properties and thermal conductivity enhancement of composite phase change materials using myristyl alcohol/metal foam for solar thermal storage[J]. Solar Energy Materials and Solar Cells, 2017, 170: 68-76. |
21 | TAO Z C, WANG H B, LIU J Q, et al. Dual-level packaged phase change materials-thermal conductivity and mechanical properties[J]. Solar Energy Materials and Solar Cells, 2017, 169: 222-225. |
22 | LING Z Y, CHEN J J, XU T, et al. Thermal conductivity of an organic phase change material/expanded graphite composite across the phase change temperature range and a novel thermal conductivity model[J]. Energy Conversion and Management, 2015, 102: 202-208. |
23 | AHMET S. Form-stable paraffin/high density polyethylene composites as solid-liquid phase change material for thermal energy storage: Preparation and thermal properties[J]. Energy Conversion and Management, 2004, 45(13/14): 2033-2042. |
24 | SURYANARAYANA C, RAO K C, KUMAR D. Preparation and characterization of microcapsules containing linseed oil and its use in self-healing coatings[J]. Progress in Organic Coatings, 2008, 63(1): 72-78. |
25 | LEITCH P, TASSINARI T H. Interactive textiles: New materials in the new millennium. part 1[J]. Journal of Industrial Textiles, 2000, 29(3): 173-190. |
26 | YU S Y, WANG X D, WU D Z. Microencapsulation of n-octadecane phase change material with calcium carbonate shell for enhancement of thermal conductivity and serving durability: Synthesis, microstructure, and performance evaluation[J]. Applied Energy, 2014, 114: 632-643. |
27 | CHAI L X, WANG X D, WU D Z. Development of bifunctional microencapsulated phase change materials with crystalline titanium dioxide shell for latent-heat storage and photocatalytic effectiveness[J]. Applied Energy, 2015, 138: 661-674. |
28 | ZAHIR M H, MOHAMED S A, SAIDUR R, et al. Supercooling of phase-change materials and the techniques used to mitigate the phenomenon[J]. Applied Energy, 2019, 240: 793-817. |
29 | 朱思贤, 邹得球, 鲍家明, 等. 相变材料的过冷特性及调控研究进展[J]. 材料导报, 2020, 34(19): 19075-19082. |
ZHU S X, ZOU D Q, BAO J M, et al. Supercooling characteristics and its adjustment of phase change material: A review[J]. Materials Reports, 2020, 34(19): 19075-19082. | |
30 | SAFARI A, SAIDUR R, SULAIMAN F A, et al. A review on supercooling of Phase Change Materials in thermal energy storage systems[J]. Renewable and Sustainable Energy Reviews, 2017, 70: 905-919. |
31 | WANG S F, WEI K, SHI W S, et al. Study on the rheological properties and phase-change temperature regulation of asphalt modified by high/low-temperature phase change material particles[J]. Journal of Energy Storage, 2022, 56: 105970. |
32 | QUAN Z Z, XU Y Q, RONG H, et al. Preparation of oil-in-water core-sheath nanofibers through emulsion electrospinning for phase change temperature regulation[J]. Polymer, 2022, 256: 125252. |
33 | ZHANG S L, CHEN F F, PAN W Q, et al. Development of heat transfer enhancement of a novel composite phase change material with adjustable phase change temperature[J]. Solar Energy Materials and Solar Cells, 2020, 210: 110457. |
34 | 汤磊, 曾德森, 凌子夜, 等. 相变蓄冷材料及系统应用研究进展[J]. 化工进展, 2023, 42(8): 4322-4339. |
TANG L, ZENG D S, LING Z Y, et al. Research progress of phase change materials and their application systems for cool storage[J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4322-4339. | |
35 | JIANG S, YU D, JI X, et al. Confined crystallization behavior of PEO in silica networks[J]. Polymer, 2000, 41(6): 2041-2046. |
36 | PY X, OLIVES R, MAURAN S. Paraffin/porous-graphite-matrix composite as a high and constant power thermal storage material[J]. International Journal of Heat and Mass Transfer, 2001, 44(14): 2727-2737. |
37 | 霍英杰, 闫霆, 王凯, 等. 钾明矾/膨胀石墨定形复合相变材料储热性能研究[J]. 上海电力大学学报, 2022, 38(5): 450-456, 465. |
HUO Y J, YAN T, WANG K, et al. Study on heat storage performance of potassium alum/expanded graphite form-stable composite phase change material[J]. Journal of Shanghai University of Electric Power, 2022, 38(5): 450-456, 465. | |
38 | WANG T Y, WANG S F, LUO R L, et al. Microencapsulation of phase change materials with binary cores and calcium carbonate shell for thermal energy storage[J]. Applied Energy, 2016, 171: 113-119. |
39 | GHARSALLAOUI A, ROUDAUT G, CHAMBIN O, et al. Applications of spray-drying in microencapsulation of food ingredients: An overview[J]. Food Research International, 2007, 40(9): 1107-1121. |
40 | ZHAO C Y, ZHANG G H. Review on microencapsulated phase change materials (MEPCMs): Fabrication, characterization and applications[J]. Renewable and Sustainable Energy Reviews, 2011, 15(8): 3813-3832. |
41 | BRYANT Y G. Melt spun fibers containing microencapsulated phase change material[C]//ASME International Mechanical Engineering Congress and Exposition American Society of Mechanical Engineers, 1999: 225-234. |
42 | SARIER N, ONDER E. The manufacture of microencapsulated phase change materials suitable for the design of thermally enhanced fabrics[J]. Thermochimica Acta, 2007, 452(2): 149-160. |
43 | ZHANG H Z, WANG X D. Fabrication and performances of microencapsulated phase change materials based on n-octadecane core and resorcinol-modified melamine-formaldehyde shell[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 332(2/3): 129-138. |
44 | JAHNS E. Microencapsulated phase change material[C]//International Energy Agency Energy Conversation Through Energy Storage Programme (ECES), annex 10: fourth workshop, 1999. |
45 | JIANG Z, PALACIOS A, ZOU B Y, et al. A review on the fabrication methods for structurally stabilised composite phase change materials and their impacts on the properties of materials[J]. Renewable and Sustainable Energy Reviews, 2022, 159: 112134. |
46 | MIN X, FANG M H, HUANG Z H, et al. Enhanced thermal properties of novel shape-stabilized PEG composite phase change materials with radial mesoporous silica sphere for thermal energy storage[J]. Scientific Reports, 2015, 5: 12964. |
47 | DEHMOUS M, FRANQUET E, LAMROUS N. Mechanical and thermal characterizations of various thermal energy storage concretes including low-cost bio-sourced PCM[J]. Energy and Buildings, 2021, 241: 110878. |
48 | QIAN T T, LI J H, DENG Y. Pore structure modified diatomite-supported PEG composites for thermal energy storage[J]. Scientific Reports, 2016, 6: 32392. |
49 | 王宇, 李琳. 溶胶-凝胶法制备脂肪酸/SiO2复合储能相变材料研究[J]. 化工新型材料, 2016, 44(7): 64-66. |
WANG Y, LI L. Preparation of fatty acid/SiO2 composite energy storage phase change material by sol-gel method[J]. New Chemical Materials, 2016, 44(7): 64-66. | |
50 | GUO Q, WANG T. Preparation and characterization of sodium sulfate/silica composite as a shape-stabilized phase change material by sol-gel method[J]. Chinese Journal of Chemical Engineering, 2014, 22(3): 360-364. |
51 | TAHAN LATIBARI S, MEHRALI M, MEHRALI M, et al. Synthesis, characterization and thermal properties of nanoencapsulated phase change materials via sol-gel method[J]. Energy, 2013, 61: 664-672. |
52 | REN J P, MA B, SI W, et al. Preparation and analysis of composite phase change material used in asphalt mixture by sol-gel method[J]. Construction and Building Materials, 2014, 71: 53-62. |
53 | MARSKE F, HAUPT C, BIRKEMEYER C, et al. Shape-stabilization of organic phase change materials as mechanically stable silica boards with high latent heats synthesized via sol-gel route[J]. Journal of Building Engineering, 2022, 60: 105198. |
54 | KIANI H, ZHANG Z H, DELGADO A, et al. Ultrasound assisted nucleation of some liquid and solid model foods during freezing[J]. Food Research International, 2011, 44(9): 2915-2921. |
55 | 甘伟, 章学来, 徐笑锋. 超声波优化相变蓄冷材料的研究进展[J]. 包装工程, 2021, 42(1): 46-54. |
GAN W, ZHANG X L, XU X F. Research progress on optimization of phase change cool storage materials by ultrasonic[J]. Packaging Engineering, 2021, 42(1): 46-54. | |
56 | MIYASAKA E, TAKAI M, HIDAKA H, et al. Effect of ultrasonic irradiation on nucleation phenomena in a Na2HPO4 ·12H2O melt being used as a heat storage material[J]. Ultrasonics Sonochemistry, 2006, 13(4): 308-312. |
57 | HU F, SUN D W, GAO W H, et al. Effects of pre-existing bubbles on ice nucleation and crystallization during ultrasound-assisted freezing of water and sucrose solution[J]. Innovative Food Science & Emerging Technologies, 2013, 20: 161-166. |
58 | 章学来, 刘璐, 张永一川, 等. 超声波改善乳酸钙-氯化铵-水复合相变材料过冷特性[J]. 农业工程学报, 2019, 35(18): 200-204. |
ZHANG X L, LIU L, ZHANG Y Y C, et al. Effect of ultrasound on supercooling characteristics of calcium lactate-ammonium chloride-water composite phase change materials[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(18): 200-204. | |
59 | PALABIYIK I, MUSINA Z, WITHARANA S, et al. Dispersion stability and thermal conductivity of propylene glycol-based nanofluids[J]. Journal of Nanoparticle Research, 2011, 13(10): 5049-5055. |
[1] | 朱江恬, 张圆, 罗意彬, 杨慧婷, 李杰, 孙小琴. 基于相变材料蓄热的5G通信基站柜体优化[J]. 储能科学与技术, 2023, 12(9): 2789-2798. |
[2] | 赵民, 李杨, 蔡婕, 康维斌, 刘磊. 民用建筑用毛细管相变蓄能罐性能的实验研究[J]. 储能科学与技术, 2023, 12(8): 2626-2637. |
[3] | 严景好, 李杰, 李一鸣, 孙小琴, 席丽娜, 姜昌伟. 基于梯度孔隙率金属泡沫的复合相变单元储热性能数值模拟[J]. 储能科学与技术, 2023, 12(8): 2424-2434. |
[4] | 张琦, 李银雷, 栗艳芳, 宋俊, 吴学红, 刘重阳, 张雪龄. 膨胀石墨/多壁碳纳米管基共晶盐复合相变材料的制备及热特性[J]. 储能科学与技术, 2023, 12(8): 2435-2443. |
[5] | 彭子安, 段文超, 李杰, 孙小琴, 宋孟杰. 数据中心用壳管式相变储能换热器的储能特性[J]. 储能科学与技术, 2023, 12(6): 1765-1773. |
[6] | 见禹, 陈宝明, 朱彭真, 李坤. 含梯度孔密度骨架石蜡方腔相变传热特性[J]. 储能科学与技术, 2023, 12(6): 1968-1980. |
[7] | 张琦, 刘重阳, 宋俊, 张雪龄, 李银雷, 栗艳芳. 微胶囊相变储能材料的合成及其应用研究进展[J]. 储能科学与技术, 2023, 12(4): 1110-1130. |
[8] | 陈红兵, 高雪宁, 刘涛, 王聪聪, 赵瑞, 孙俊辉, 王传岭, 何迪. 应用石蜡/GO复合相变材料的太阳能PV/T系统性能[J]. 储能科学与技术, 2023, 12(3): 661-668. |
[9] | 胡健, 任育杰, 杜金魁, 刘元, 刘丹. 含相变储能的风/光/热电联产综合能源系统优化调度[J]. 储能科学与技术, 2023, 12(3): 968-975. |
[10] | 刘伟, 李振明, 刘铭扬, 杨岑玉, 梅超, 李迎. 高温相变储热材料制备与应用研究进展[J]. 储能科学与技术, 2023, 12(2): 398-430. |
[11] | 沈雪晴, 陈威. 内嵌树形翅片相变层电池热管理性能[J]. 储能科学与技术, 2023, 12(2): 459-467. |
[12] | 董金美, 刘启元, 吴芳, 贾利蕊, 文静, 常成功, 郑卫新, 肖学英. 脂肪酸类二元储能材料的相变特性与配比调节[J]. 储能科学与技术, 2023, 12(2): 349-356. |
[13] | 肖强强, 孙佳康, 唐洪达, 张林华, 刁乃仁, 李辉. 十二水磷酸氢二钠复合相变材料制备及应用于大棚降温的节能效果[J]. 储能科学与技术, 2023, 12(12): 3635-3642. |
[14] | 张第玲, 王翔, 李豪杰, 刘玉乾, 黄云, 暴宁钟. 定型有机相变储热材料阻燃改性的研究进展[J]. 储能科学与技术, 2023, 12(12): 3836-3851. |
[15] | 张岩岩, 熊亚选, 陈亚辉, 全瑞星, 程广贵, 赵彦琦, 丁玉龙. 相变填充床储热系统研究与应用进展[J]. 储能科学与技术, 2023, 12(12): 3852-3872. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||