储能科学与技术 ›› 2014, Vol. 3 ›› Issue (6): 642-667.doi: 10.3969/j.issn.2095-4239.2014.06.012
李文俊, 褚赓, 彭佳悦, 郑浩, 李西阳, 郑杰允, 李泓
收稿日期:
2014-09-24
出版日期:
2014-11-01
发布日期:
2014-11-01
通讯作者:
李泓,研究员,研究方向为固体离子学与锂电池材料,E-mail:hli@iphy.ac.cn.
作者简介:
李文俊(1990--),男,博士研究生,研究方向为金属锂负极及其保护,E-mail:wenjunli1990@163.com;
基金资助:
LI Wenju, CHU Geng, PENG Jiayue, ZHENG Hao, LI Xiyang, ZHENG Jieyun, LI Hong
Received:
2014-09-24
Online:
2014-11-01
Published:
2014-11-01
摘要: 表征技术的进步对于锂离子电池科学与技术的发展至关重要.一般希望获得锂离子电池材料及电池的广泛信息,包括化学组成,材料形貌,晶体结构,微观组织,表面结构,输运特性,力学特性,热学特性等.本文总结了锂电材料常用的表征技术及其研究现状与发展趋势,包括最近发展的具有高时间和空间分辨的表征手段,如原子力-拉曼光谱联用,原位扫描电镜,原位透射电镜,球差校正扫描透射电镜,扫描透射X射线成像,中子衍射以及二次离子质谱等.
中图分类号:
李文俊, 褚赓, 彭佳悦, 郑浩, 李西阳, 郑杰允, 李泓. 锂离子电池基础科学问题(Ⅻ)----表征方法[J]. 储能科学与技术, 2014, 3(6): 642-667.
LI Wenju, CHU Geng, PENG Jiayue, ZHENG Hao, LI Xiyang, ZHENG Jieyun, LI Hong. Fundamental scientific aspects of lithium batteries(Ⅻ)--Characterization techniques[J]. Energy Storage Science and Technology, 2014, 3(6): 642-667.
[1] Aurbach D,Markovsky B,Salitra G, et al . Review on electrode-electrolyte solution interactions, related to cathode materials for Li-ion batteries[J]. Journal of Power Sources ,2007,165(2):491-499. [2] Park K S,Son J T,Chung H T, et al . Synthesis of LiFePO 4 by co-precipitation and microwave heating[J]. Electrochemistry Communications ,2003,5(10):839-842. [3] Meligrana G,Gerbaldi C,Tuel A, et al . Hydrothermal synthesis of high surface LiFePO 4 powders as cathode for Li-ion cells[J]. Journal of Power Sources ,2006,160(1):516-522. [4] Bakenov Z,Taniguchi I. Electrochemical performance of nanostructured LiM x Mn 2- x O 4 (M=Co and Al) powders at high charge-discharge operations[J]. Solid State Ionics ,2005,176(11-12):1027-1034. [5] Zheng Z H,Tang Z L,Zhang Z T, et al . Surface modification of Li 1.03 Mn 1.97 O 4 spinels for improved capacity retention[J]. Solid State Ionics ,2002,148(3-4):317-321. [6] Wang Y,Lee J Y. Microwave-assisted synthesis of SnO 2 -graphite nanocomposites for Li-ion battery applications[J]. Journal of Power Sources ,2005,144(1):220-225. [7] Fey G T K,Chen C L. High-capacity carbons for lithium-ion batteries prepared from rice husk[J]. Journal of Power Sources ,2001,97-98(1):47-51. [8] Yoshikawa D,Kadoma Y,Kim J M, et al . Spray-drying synthesized lithium-excess Li 4+ x Ti 5- x O 12- δ and its electrochemical property as negative electrode material for Li-ion batteries[J]. Electrochimica Acta ,2010,55(6):1872-1879. [9] Kramer E,Schedlbauer T,Hoffmann B, et al . Mechanism of anodic dissolution of the aluminum current collector in 1 M LiTFSI EC:DEC 3:7 in rechargeable lithium batteries[J]. Journal of the Electrochemical Society ,2012,160(2):A356-A360. [10] Diao Y,Xie K,Xiong S, et al . Analysis of polysulfide dissolved in electrolyte in discharge-charge process of Li-S battery[J]. Journal of the Electrochemical Society ,2012,159(4):A421. [11] Jang I C,Hidaka Y,Ishihara T. Li metal utilization in lithium air rechargeable batteries[J]. Journal of Power Sources ,2013,244:606-609. [12] Lee B G,Nam S C,Choi J. Anodic TiO 2 nanotubes as anode electrode in Li-air and Li-ion batteries[J]. Current Applied Physics ,2012,12(6):1580-1585. [13] Nelson G C,Neiswander P A,Searcy J Q. Lithium compound identification in thermally activated batteries by iss and sims[J]. Journal of Vacuum Science & Technology ,1981,18(3):750-751. [14] Peled E,Tow D B,Merson A, et al . Composition, depth profiles and lateral distribution of materials in the SEI built on HOPG-TOF SIMS and XPS studies[J]. Journal of Power Sources ,2001,97-98:52-57. [15] Ota H,Akai T,Namita H, et al . XAFS and TOF-SIMS analysis of SEI layers on electrodes[J]. Journal of Power Sources ,2003,119:567-571. [16] Castle J E,Decker F,Salvi A M, et al . XPS and TOF-SIMS study of the distribution of Li ions in thin films of vanadium pentoxide after electrochemical intercalation[J]. Surface and Interface Analysis ,2008,40(3-4):746-750. [17] Swiatowska-Mrowiecka J,Martin F,Maurice V, et al . The distribution of lithium intercalated in V 2 O 5 thin films studied by XPS and ToF-SIMS[J]. Electrochimica Acta ,2008,53(12):4257-4266. [18] Li J T,Maurice V,Swiatowska-Mrowiecka J, et al . XPS, time-of-flight-SIMS and polarization modulation IRRAS study of Cr 2 O 3 thin film materials as anode for lithium ion battery[J]. Electrochimica Acta ,2009,54(14):3700-3707. [19] Minakshi M,Thurgate S. Surface analysis on discharged MnO 2 cathode using XPS and SIMS techniques[J]. Surface and Interface Analysis ,2009,41(1):56-60. [20] Li J T,Swiatowska J,Seyeux A, et al . XPS and ToF-SIMS study of Sn-Co alloy thin films as anode for lithium ion battery[J]. Journal of Power Sources ,2010,195(24):8251-8257. [21] Myung S T,Sasaki Y,Sakurada S, et al . Electrochemical behavior of current collectors for lithium batteries in non-aqueous alkyl carbonate solution and surface analysis by ToF-SIMS[J]. Electrochimica Acta ,2009,55(1):288-297. [22] Veryovkin I V,Tripa C E,Zinovev A V, et al . TOF SIMS characterization of SEI layer on battery electrodes[J]. Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms ,2014,332:368-372. [23] Lu P,Harris S J. Lithium transport within the solid electrolyte interphase[J]. Electrochemistry Communications ,2011,13(10):1035-1037. [24] Nakai H,Kubota T,Kita A, et al . Investigation of the solid electrolyte interphase formed by fluoroethylene carbonate on Si electrodes[J]. Journal of the Electrochemical Society ,2011,158(7):A798-A801. [25] Lee J T,Nitta N,Benson J, et al . Comparative study of the solid electrolyte interphase on graphite in full Li-ion battery cells using X-ray photoelectron spectroscopy, secondary ion mass spectrometry, and electron microscopy[J]. Carbon ,2013,52:388-3897. [26] Li W J,Zheng H,Chu G, et al . FD 176:Effect of electrochemical dissolution and deposition order on lithium dendrite formation:A top view investigation[J]. Faraday Discussions ,2014,doi:10.1039/c4fd00124a. [27] Aurbach D,Markovsky B,Shechter A, et al . A comparative study of synthetic graphite and Li electrodes in electrolyte solutions based on ethylene carbonate dimethyl carbonate mixtures[J]. Journal of the Electrochemical Society ,1996,143(12):3809-3820. [28] Kanamura K,Tamura H,Shiraishi S, et al. Xps analysis for the lithium surface immersed in tetrahydrofuran containing various salts[J]. Denki Kagaku ,1993,61(12):1377-1382. [29] Aurbach D,Granot E. The study of electrolyte solutions based on solvents from the "glyme" family (linear polyethers) for secondary Li battery systems[J]. Electrochimica Acta ,1996,42(4):697-718. [30] Aurbach D,Markovsky B,Weissman I, et al . On the correlation between surface chemistry and performance of graphite negative electrodes for Li ion batteries[J]. Electrochimica Acta ,1999,45(1-2):67-86. [31] Ruffo R,Hong S S,Chan C K, et al . Impedance analysis of silicon nanowire lithium ion battery anodes[J]. Journal of Physical Chemistry C ,2009,113(26):11390-11398. [32] Ahn H J,Choi H C,Park K W, et al . Investigation of the structural and electrochemical properties of size-controlled SnO 2 nanoparticles[J]. Journal of Physical Chemistry B ,2004,108(28):9815-9820. [33] Andersson A M,Herstedt M,Bishop A G, et al . The influence of lithium salt on the interfacial reactions controlling the thermal stability of graphite anodes[J]. Electrochimica Acta ,2002,47(12):1885-1898. [34] Dedryvère R,Laruelle S,Grugeon S, et al . Contribution of X-ray photoelectron spectroscopy to the study of the electrochemical reactivity of CoO toward lithium[J]. Chemistry of Materials ,2004,16(6):1056-1061. [35] Shaju K M,Rao G V S,Chowdari B V R. Performance of layered Li(Ni 1/3 Co 1/3 Mn 1/3 )O 2 as cathode for Li-ion batteries[J]. Electrochimica Acta ,2002,48(2):145-151. [36] Andersson A M,Abraham D P,Haasch R, et al . Surface characterization of electrodes from high power lithium-ion batteries[J]. Journal of the Electrochemical Society ,2002,149(10):A1358. [37] Yabuuchi N,Yoshii K,Myung S T, et al . Detailed studies of a high-capacity electrode material for rechargeable batteries, Li 2 MnO 3 -LiCo 1/3 Ni 1/3 Mn 1/3 O 2 [J]. Journal of the American Chemical Society ,2011,133(12):4404-4419. [38] Liu J,Manthiram A. Understanding the improved electrochemical performances of Fe-substituted 5 V spinel cathode LiMn 1.5 Ni 0.5 O 4 [J]. Journal of Physical Chemistry C ,2009,113(33):15073-15079. [39] Aurbach D,Pollak E,Elazari R, et al . On the surface chemical aspects of very high energy density,rechargeable Li-S batteries[J]. Journal of the Electrochemical Society ,2009,156(8):A694. [40] Agostini M,Lee D J,Scrosati B, et al . Characteristics of Li 2 S 8 -tetraglyme catholyte in a semi-liquid lithium-sulfur battery[J]. Journal of Power Sources ,2014,265:14-19. [41] McCloskey B D,Speidel A,Scheffler R, et al . Twin problems of interfacial carbonate formation in nonaqueous Li-O 2 batteries[J]. The Journal of Physical Chemistry Letters ,2012,3(8):997-1001. [42] Yang W,Salim J,Li S, et al . Perovskite Sr 0.95 Ce 0.05 CoO 3- δ loaded with copper nanoparticles as a bifunctional catalyst for lithium-air batteries[J]. Journal of Materials Chemistry ,2012,22(36):18902. [43] Hu Y,Kong W,Li H, et al . Experimental and theoretical studies on reduction mechanism of vinyl ethylene carbonate on graphite anode for lithium ion batteries[J]. Electrochemistry Communications ,2004,6(2):126-131. [44] Wu Xiaodong,Wang Zhaoxiang,Chen Liquan, et al . Ag-enhanced SEI formation on Si particles for lithium batteries[J]. Electrochemistry Communications ,2003,5(11):935-939. [45] Xu B,Fell C R,Chi M, et al . Identifying surface structural changes in layered Li-excess nickel manganese oxides in high voltage lithium ion batteries:A joint experimental and theoretical study[J]. Energy & Environmental Science ,2011,4(6):2223-2233. [46] Wang F,Robert R,Chernova N A, et al . Conversion reaction mechanisms in lithium ion batteries:Study of the binary metal fluoride electrodes[J]. Journal of the American Chemical Society ,2011,133(46):18828-18836. [47] Rom I,Wachtler M,Papst I, et al . Electron microscopical characterization of Sn/SnSb composite electrodes for lithium-ion batteries[J]. Solid State Ionics ,2001,143(3-4):329-336. [48] Al-Sharab J F,Bentley J,Badway F, et al . EELS compositional and valence mapping in iron fluoride-carbon nanocomposites[J]. Journal of Nanoparticle Research ,2013,15(4): [49] Schuster M E,Teschner D,Popovic J, et al . Charging and discharging behavior of solvothermal LiFePO 4 cathode material investigated by combined EELS/NEXAFS study[J]. Chemistry of Materials ,2014,26(2):1040-1047. [50] Naji A,Thomas P,Ghanbaja J, et al . Identification by TEM and EELS of the products formed at the surface of a carbon electrode during its reduction in MClO 4 -EC and MBF 4 -EC electrolytes (M=Li, Na)[J]. Micron .,2000,31(4):401-409. [51] Kohandehghan A,Kalisvaart P,Cui K, et al . Silicon nanowire lithium-ion battery anodes with ALD deposited TiN coatings demonstrate a major improvement in cycling performance[J]. Journal of Materials Chemistry A ,2013,1(41):12850. [52] Gu Meng,Wang Zhiguo,Connell J G, et al . Electronic origin for the phase transition from amorphous Li x Si to crystalline Li 15 Si 4 [J]. ACS Nano ,2013,7(7):6303-6309. [53] Sun X C,Hegde M,Wang J, et al . Structural analysis and electrochemical studies of carbon coated Li 4 Ti 5 O 12 particles used as anode for lithium ion battery[J]. ECS Transactions ,2014,58(14):79-88. [54] Zhou J,Wang J,Hu Y, et al . Imaging state of charge and its correlation to interaction variation in an LiMn 0.75 Fe 0.25 PO 4 nanorods-graphene hybrid[J]. Chemical Communications ,2013,49(17):1765-1767. [55] Chueh W C,El Gabaly F,Sugar J D, et al . Intercalation pathway in many-particle LiFePO 4 electrode revealed by nanoscale state-of-charge mapping[J]. Nano Letters ,2013,13(3):866-872. [56] Uchimoto Y,Sawada H,Yao T. Changes in electronic structure by Li ion deintercalation in LiNiO 2 from nickel L-edge and OK-edge XANES[J]. Journal of Power Sources ,2001,97-98:326-327. [57] Uchimoto Y,Sawada H,Yao T. Changes in electronic structure by Li ion deintercalation in LiCoO 2 from cobalt L-edge and oxygen K-edge XANES[J]. Journal of Synchrotron Radiation ,2001,8:872-873. [58] Rosolen J M,Abbate M. XANES and EXAFS of chemically deintercalated LiCo 0.5 Ni 0.5 O 2 [J]. Solid State Ionics ,2001,139(1-2):83-88. [59] Wen W,Kumarasamy B,Mukerjee S, et al . Origin of 5 V electrochemical activity observed in non-redox reactive divalent cation doped LiM 0.5- x Mn 1.5+ x O 4 (0≤ x ≤0.5)cathode materials In situ XRD and XANES spectroscopy studies[J]. Journal of the Electrochemical Society ,2005,152(9):A1902-A1911. [60] Seung-Taek M,Komaba S,Hirosaki N, et al . Structural investigation of layered Li 1- δ Mn x Cr 1- x O 2 by XANES and in situ XRD measurements[J]. Journal of the Electrochemical Society ,2003,150(12):A1560-1568. [61] Holzapfel M,Proux O,Strobel P, et al . Effect of iron on delithiation in LixCo 1- y Fe y O 2 . Part 2:In-situ XANES and EXAFS upon electrochemical cycling[J]. Journal of Materials Chemistry ,2004,14(1):102-110. [62] Kobayashi H,Emura S,Arachi Y, et al . Investigation of inorganic compounds on the surface of cathode materials using Li and OK-edge XANES[J]. Journal of Power Sources ,2007,174(2):774-778. [63] Kobayashi H,Shikano M,Koike S, et al . Investigation of positive electrodes after cycle testing of high-power Li-ion battery cells I. An approach to the power fading mechanism using XANES[J]. Journal of Power Sources ,2007,174(2):380-386. [64] Yang Songlan,Wang Dongniu,Liang Guoxian, et al . Soft X-ray XANES studies of various phases related to LiFePO 4 based cathode materials[J]. Energy & Environmental Science ,2012,5(5):7007-7016. [65] Tanaka S,Kitta M,Tamura T, et al . First-principles calculations of O-K ELNES/XANES of lithium titanate[J]. Journal of Physics D-Applied Physics ,2012,45(49):494004. [66] Akai T,Ota H,Namita H, et al . XANES study on solid electrolyte interface of Li ion battery[J]. Physica Scripta ,2005(T115):408-411. [67] Wang Xiaojian,Jaye Cherno,Nam Kyungwan, et al . Investigation of the structural changes in Li 1- x FePO 4 upon charging by synchrotron radiation techniques[J]. Journal of Materials Chemistry ,2011,21(30): 11406-11411. [68] Bak Seong Min,Nam Kyung Wan,Chang Wonyoung, et al . Correlating structural changes and gas evolution during the thermal decomposition of charged Li x Ni 0.8 Co 0.15 Al 0.05 O 2 cathode materials[J]. Chemistry of Materials ,2013,25(3):337-351. [69] Nam Kyung Wan,Bak Seong Min,Hu Enyuan, et al . Combining in situ synchrotron X-ray diffraction and absorption techniques with transmission electron microscopy to study the origin of thermal instability in overcharged cathode materials for lithium-ion batteries[J]. Advanced Functional Materials ,2013,23(8):1047-1063. [70] Yu Xiqian,Pan Huilin,Wan Wang, et al . A size-dependent sodium storage mechanism in Li 4 Ti 5 O 12 investigated by a novel characterization technique combining in situ X-ray diffraction and chemical sodiation[J]. Nano Lett .,2013,13(10): 4721-4727. [71] Ma Jun,Zhou Yong Ning,Gao Yurui, et al . Molybdenum substitution for improving the charge compensation and activity of Li 2 MnO 3 [J]. Chemistry : A European Journal ,2014,20(28):8723-8730. [72] Ma Jun,Zhou Yongning,Gao Yurui, et al . Feasibility of using Li 2 MoO 3 in constructing Li-rich high energy density cathode materials[J]. Chemistry of Materials ,2014,26(10):3256-3262. [73] Liu Xiaosong,Liu Jun,Qiao Ruimin, et al . Phase transformation and lithiation effect on electronic structure of Li x FePO 4 :An in-depth study by soft X-ray and simulations[J]. Journal of the American Chemical Society ,2012,134(33):13708-13715. [74] Wang Qing,Li Hong,Chen Liquan, et al . Monodispersed hard carbon spherules with uniform nanopores[J]. Carbon ,2001,39(14):2211-2214. [75] He Yu,Yu Xiqian,Li Geng, et al . Shape evolution of patterned amorphous and polycrystalline silicon microarray thin film electrodes caused by lithium insertion and extraction[J]. Journal of Power Sources ,2012,216:131-138. [76] Li Hong,Huang Xuejie,Chen Liquan. Direct imaging of the passivating film and microstructure of nanometer-scale SnO anodes in lithium rechargeable batteries[J]. Electrochemical and Solid-State Letters ,1998,1(6):241-243. [77] Zhao Liang,Hu Yongsheng,Li Hong, et al . Porous Li 4 Ti 5 O 12 coated with N-doped carbon from ionic liquids for Li-ion batteries[J]. Advanced Materials ,2011,23(11):1385-1388. [78] Huang Jianyu,Zhong Li,Wang Chongmin, et al . In situ observation of the electrochemical lithiation of a single SnO 2 nanowire electrode[J]. Science ,2010,330(6010):1515-1520. [79] Liu Xiaohua,Huang Jianyu. In situ TEM electrochemistry of anode materials in lithium ion batteries[J]. Energy & Environmental Science ,2011,4(10):3844. [80] Gu M,Parent L R,Mehdi B L, et al . Demonstration of an electrochemical liquid cell for operando transmission electron microscopy observation of the lithiation/delithiation behavior of Si nanowire battery anodes[J]. Nano Letters ,2013,13(12):6106-6112. [81] Santhanagopalan D,Qian D,McGilvray T, et al . Interface limited lithium transport in solid-state batteries[J]. The Journal of Physical Chemistry Letters ,2014,5(2):298-303. [82] Li G B,Lu Z G,Huang B Y, et al . An evaluation of lithium intercalation capacity into carbon by XRD parameters[J]. Solid State Ionics ,1995,81(1-2):15-18. [83] Peres J P,Demourgues A,Delmas C. Structural investigations on Li 0.65- z Ni 1+ z O 2 cathode material:XRD and EXAFS studies[J]. Solid State Ionics ,1998,111(1-2):135-144. [84] Bergstrom O,Bjork H,Gustafsson T, et al . Direct XRD observation of oxidation-state changes on Li-ion insertion into transition-metal oxide hosts[J]. Journal of Power Sources ,1999,81:685-689. [85] Bjork H,Gustafsson T,Thomas J O. Direct observation of XRD redox processes in TMO's[C]//Sweden:1998 MRS fall meeting,1999:203-211. [86] Thurston T R,Jisrawi N M,Mukerjee S, et al . Synchrotron X-ray diffraction studies of the structural properties of electrode materials in operating battery cells[J]. Applied Physics Letters ,1996,69(2):194. [87] Eriksson T,Hjelm A K,Lindbergh G, et al . Kinetic study of LiMn 2 O 4 cathodes by in situ XRD with constant-current cycling and potential stepping[J]. Journal of the Electrochemical Society ,2002,149(9):A1164-A1170. [88] Yang Xiaoqing,McBreen J,Yoon Won Sub, et al . Structural studies of the new carbon-coated silicon anode materials using synchrotron-based in situ XRD[J]. Electrochemistry Communications ,2002,4(11):893-897. [89] Yang Xiaoqing,McBreen J,Yoon Won Sub, et al . Crystal structure changes of LiMn 0.5 Ni 0.5 O 2 cathode materials during charge and discharge studied by synchrotron based in situ XRD[J]. Electrochemistry Communications ,2002,4(8):649-654. [90] Wang X J,Chen H Y,Yu X Q, et al . A new in situ synchrotron X-ray diffraction technique to study the chemical delithiation of LiFePO 4 [J]. Chemical Communications ,2011,47(25):7170-7172. [91] Hatchard T D,Dahn J R. In situ XRD and electrochemical study of the reaction of lithium with amorphous silicon[J]. Journal of the Electrochemical Society ,2004,151(6):A838-A842. [92] Liu L J,Chen L Q,Huang X J, et al . Electrochemical and in situ synchrotron XRD studies on Al 2 O 3 -coated LiCoO 2 cathode material[J]. Journal of the Electrochemical Society ,2004,151(9):A1344-A1351. [93] Ronnebro E,Yin J T,Kitano A, et al . Structural analysis by synchrotron XRD of a Ag 52 Sn 48 nanocomposite electrode for advanced Li-ion batteries[J]. Journal of the Electrochemical Society ,2004,151(10):A1738-A1744. [94] Zhang L Q,Wang X Q,Noguchi H, et al . Electrochemical and ex situ XRD investigations on (1- x )LiNiO 2 center dot x Li 2 TiO 3 (0.05≤ x ≤0.5)[J]. Electrochimica Acta ,2004,49(20):3305-3311. [95] Yoon Won Sub,Balasubramanian M,Yang Xiaoqing, et al . Time-resolved XRD study on the thermal decomposition of Li 1- x Ni 0.8 Co 0.15 Al 0.05 O 2 cathode materials for Li-ion batteries[J]. Electrochemical and Solid-State Letters ,2005,8(2):A83-A86. [96] Wu H M,Tu J P,Yuan Y F, et al . Electrochemical and ex situ XRD studies of a LiMn 1.5 Ni 0.5 O 4 high-voltage cathode material[J]. Electrochimica Acta ,2005,50(20):4104-4108. [97] Bowden W,Grey C P,Hackney S, et al . Lithiation of ramsdellite-pyrolusite MnO 2 :NMR, XRD, TEM and electrochemical investigation of the discharge mechanism[J]. Journal of Power Sources ,2006,153(2):265-273. [98] Kodama R,Terada Y,Nakai I, et al . Electrochemical and in situ XAFS-XRD investigation of Nb 2 O 5 for rechargeable lithium batteries[J]. Journal of the Electrochemical Society ,2006,153(3):A583-A588. [99] Yang Xiaoqing,Yoon Won Sub,Kyung Yoonchung, et al . A comparative study on structural changes of LiCo 1/3 Ni 1/3 Mn 1/3 O 2 and LiNi 0.8 Co 0.15 Al 0.05 O 2 during first charge using in situ XRD[J]. Electrochemistry Communications ,2006,8(8):1257-1262. [100] Hwang Bing Joe,Hu Shao Kang,Chen Ching Hsiang, et al . In-situ XRD investigations on structure changes of ZrO 2 -coated LiMn 0.5 Ni 0.5 O 2 cathode materials during charge[J]. Journal of Power Sources ,2007,174(2):761-765. [101] Zhang Dongyun,Zhang Peixin,Yi Juan, et al . XRD simulation study of doped LiFePO 4 [J]. Journal of Alloys and Compounds ,2011,509(4):1206-1210. [102] Sougrati M T,Fullenwarth J,Debenedetti A, et al . TiSnSb a new efficient negative electrode for Li-ion batteries:Mechanism investigations by operando-XRD and Mossbauer techniques[J]. Journal of Materials Chemistry ,2011,21(27):10069-10076. [103] Yao K P C,Kwabi D G,Quinlan R A, et al . Thermal stability of Li 2 O 2 and Li 2 O for Li-air batteries:In situ XRD and XPS studies[J]. Journal of the Electrochemical Society ,2013,160(6):A824-A831. [104] Rougier A,Delmas C,Chadwick A V. Noncooperative jahn-teller effect in LiNiO 2 An exafs study[J]. Solid State Communications ,1995,94(2):123-127. [105] Chadwick A V,Savin S L P,Packer R J, et al . EXAFS studies of lithium manganese oxides[J]. Physica Status Solidi C-Conferences and Critical Reviews ,2005,2(1):657-660. [106] Paolone A,Castellano C,Cantelli R, et al . Evidence of a splitting of the MnO distance and of a large lattice disorder in the charge-ordered phase of LiMn 2 O 4 obtained by EXAFS[J]. Physical Review B ,2003,68(1):14108. [107] Jung Hongryun,Lee Wanjin. Electrochemical characterization of electrospun SnO x -embedded carbon nanofibers anode for lithium ion battery with EXAFS analysis[J]. Journal of Electroanalytical Chemistry ,2011,662(2):334-342. [108] Jung Hongryun,Cho Sungjune,Kim K N, et al . Electrochemical properties of electrospun Cu x O( x =1, 2)-embedded carbon nanofiber with EXAFS analysis[J]. Electrochimica Acta ,2011,56(19):6722-6731. [109] Liu X,Wang D,Liu G, et al . Distinct charge dynamics in battery electrodes revealed by in situ and operando soft X-ray spectroscopy[J]. Nat . Commun .,2013,4:2568. [110] Yu Xiqian,Lyu Yingchun,Gu Lin, et al . Understanding the rate capability of high-energy-density Li-rich layered Li 1.2 Ni 0.15 Co 0.1 Mn 0.55 O 2 cathode materials[J]. Advanced Energy Materials ,2014,4(5):1300950. [111] Arbi K,Hoelzel M,Kuhn A, et al . Structural factors that enhance lithium mobility in fast-ion Li 1+ x Ti 2- x Al x (PO 4 ) 3 (0≤ x ≤0.4)conductors investigated by neutron diffraction in the temperature range 100~500 K[J]. Inorganic Chemistry ,2013,52(16):9290-9296. [112] Li X Y,Zhang B,Zhang Z G, et al . Crystallographic structure of LiFe 1- x Mn x PO 4 solid solutions studied by neutron powder diffraction[J]. Powder Diffraction ,2014,29(3):248-253. [113] Nishimura S,Kobayashi G,Ohoyama K, et al . Experimental visualization of lithium diffusion in Li x FePO 4 [J]. Nat. Mater. ,2008,7(9):707-711. [114] Han J,Zhu J,Li Y, et al . Experimental visualization of lithium conduction pathways in garnet-type Li 7 La 3 Zr 2 O 12 [J]. Chem. Commun. ( Camb ),2012,48(79):9840-9842. [115] Wang Rui,He Xiaoqing,He Lunhua, et al . Atomic structure of Li 2 MnO 3 after partial delithiation and Re-lithiation[J]. Advanced Energy Materials ,2013,3(10):1358-1367. [116] Grey C P,Dupre N. NMR studies of cathode materials for lithium-ion rechargeable batteries[J]. Chemical Reviews ,2004,104(10):4493-4512. [117] Key B,Bhattacharyya R,Morcrette M, et al . Real-time NMR investigations of structural changes in silicon electrodes for lithium-ion batteries[J]. Journal of the American Chemical Society ,2009,131(26):9239-9249. [118] Bhattacharyya R,Key B,Chen H, et al . In situ NMR observation of the formation of metallic lithium microstructures in lithium batteries[J]. Nature Materials ,2010,9(6):504-510. [119] Wiaderek K M,Borkiewicz O J,Castillo-Martinez E, et al . Comprehensive insights into the structural and chemical changes in mixed-anion FeOF electrodes by using operando PDF and NMR spectroscopy[J]. J. Am. Chem. Soc. ,2013,135(10): 4070-4078. [120] Ilott A J,Trease N M,Grey C P, et al . Multinuclear in situ magnetic resonance imaging of electrochemical double-layer capacitors[J]. Nat Commun ,2014,5:4536. [121] Lentzen M,Jahnen M,Jia B, et al . High-resolution imaging with an aberration-corrected transmission electron microscope[M]. Amsterdam,PAYS-BAS:Elsevier,2002. [122] Shao-Horn Y,Croguennec L,Delmas C, et al . Atomic resolution of lithium ions in LiCoO 2 [J]. Nat . Mater .,2003,2(7):464-467. [123] Oshima Y,Sawada H,Hosokawa F, et al . Direct imaging of lithium atoms in LiV 2 O 4 by spherical aberration-corrected electron microscopy[J]. Journal of Electron Microscopy ,2010,59(6):457-461. [124] Lu Xia,Jian Zelang,Fang Zheng, et al . Atomic-scale investigation on lithium storage mechanism in TiNb 2 O 7 [J]. Energy & Environmental Science ,2011,4(8):2638-2644. [125] Huang R,Hitosugi T,Fisher C A J, et al . Phase transitions in LiCoO 2 thin films prepared by pulsed laser deposition[J]. Materials Chemistry and Physics ,2012,133(2-3):1101-1107. [126] Hayashi T,Okada J,Toda E, et al . Degradation mechanism of LiNi 0.82 Co 0.15 Al 0.03 O 2 positive electrodes of a lithium-ion battery by a long-term cycling test[J]. Journal of the Electrochemical Society ,2014,161(6):A1007-A1011. [127] Lu Xia,Sun Yang,Jian Zelang, et al . New insight into the atomic structure of electrochemically delithiated O 3 -Li 1- x CoO 2 (0≤ x ≤0.5)nanoparticles[J]. Nano Letters ,2012,12(12):6192-6197. [128] Lu X,Zhao L,He X, et al . Lithium storage in Li 4 Ti 5 O 12 spinel:The full static picture from electron microscopy[J]. Adv. Mater. ,2012,24(24):3233-3238. [129] Inaba M,Todzuka Y,Yoshida H, et al . Raman spectra of LiCo 1- y Ni y O 2 [J]. Chemistry Letters ,1995,24(10):889-890. [130] Itoh T,Sato H,Nishina T, et al . In situ Raman spectroscopic study of Li x CoO 2 electrodes in propylene carbonate solvent systems[J]. Journal of Power Sources ,1997,68(2):333-337. [131] Julien C. Local cationic environment in lithium nickel-cobalt oxides used as cathode materials for lithium batteries[J]. Solid State Ionics ,2000,136:887-896. [132] Ohzuku T,Makimura Y. Layered lithium insertion material of LiCo 1/3 Ni 1/3 Mn 1/3 O 2 for lithium-ion batteries[J]. Chemistry Letters ,2001,7:642-643. [133] Saavedra-Arias J J,Karan N K,Pradhan D K, et al . Synthesis and electrochemical properties of Li(Ni 0.8 Co 0.1 Mn 0.1 )O 2 cathode material:Ex situ structural analysis by Raman scattering and X-ray diffraction at various stages of charge-discharge process[J]. Journal of Power Sources ,2008,183(2):761-765. [134] Patoux S,Daniel L,Bourbon C, et al . High voltage spinel oxides for Li-ion batteries:From the material research to the application[J]. Journal of Power Sources ,2009,189(1):344-352. [135] Pasero D,Reeves N,Pralong V, et al . Oxygen nonstoichiometry and phase transitions in LiMn 1.5 Ni 0.5 O 4- δ [J]. Journal of the Electrochemical Society ,2008,155(4): A282-A291. [136] Alcántara R,Jaraba M,Lavela P, et al . Optimizing preparation conditions for 5 V electrode performance, and structural changes in Li 1- x Ni 0.5 Mn 1.5 O 4 spinel[J]. Electrochimica Acta ,2002,47(11):1829-1835. [137] Kunduraci M,Al-Sharab J F,Amatucci G G. High-power nanostructured LiMn 2- x Ni x O 4 high-voltage lithium-ion battery electrode materials:Electrochemical impact of electronic conductivity and morphology[J]. Chemistry of Materials ,2006,18(15):3585-3592. [138] Hardwick L,Buqa H,Novak P. Graphite surface disorder detection using in situ Raman microscopy[J]. Solid State Ionics ,2006,177(26-32):2801-2806. [139] Baddour-Hadjean R,Pereira-Ramos J P. Raman microspectrometry applied to the study of electrode materials for lithium batteries[J]. Chem . Rev .,2010,110(3):1278-1319. [140] Li Guifeng,Li Hong,Mo Yujun, et al . Study on solid electrolyte interphase film of anode materials for lithium batteries by SERS[J]. Chinese Journal of Light Scattering ,2003,14(4):224-230. [141] Peng Zhangquan,Freunberger S A,Chen Yuhui, et al . A reversible and higher-rate Li-O 2 battery[J]. Science ,2012,337(6094):563-566. [142] Mozhzhukhina N,Méndez De Leo L P,Calvo E J. Infrared spectroscopy studies on stability of dimethyl sulfoxide for application in a Li-air battery[J]. The Journal of Physical Chemistry C ,2013,117(36):18375-18380. [143] Novák P,Goers D,Hardwick L, et al . Advanced in situ characterization methods applied to carbonaceous materials[J]. Journal of Power Sources ,2005,146(1-2):15-20. [144] Gobet M,Greenbaum S,Sahu G, et al . Structural evolution and Li dynamics in nanophase Li 3 PS 4 by solid-state and pulsed-field gradient NMR[J]. Chemistry of Materials ,2014,26(11):3558-3564. [145] Jerliu B,Dorrer L,Huger E, et al . Neutron reflectometry studies on the lithiation of amorphous silicon electrodes in lithium-ion batteries[J]. Physical Chemistry Chemical Physics ,2013,15(20):7777-7784. [146] Manke I,Markotter H,Totzke C, et al . Investigation of energy-relevant materials with synchrotron X-rays and neutrons[J]. Advanced Engineering Materials ,2011,13(8):712-729. [147] Oudenhoven J F M,Labohm F,Mulder M, et al . In situ neutron depth profiling:A powerful method to probe lithium transport in micro-batteries[J]. Adv. Mater. ,2011,23(35):4103. [148] Sharma K,Bilheux H Z,Walker L M H, et al . Neutron imaging of ion transport in mesoporous carbon materials[J]. Physical Chemistry Chemical Physics ,2013,15(28):11740-11747. [149] Saito Y,Yamamoto H,Nakamura O, et al . Determination of ionic self-diffusion coefficients of lithium electrolytes using the pulsed field gradient NMR[J]. Journal of Power Sources ,1999,81:772-776. [150] Reddy M J,Chu P P. Li-7 NMR spectroscopy and ion conduction mechanism in mesoporous silica (SBA-15) composite poly(ethylene oxide) electrolyte[J]. Journal of Power Sources ,2004,135(1-2):1-8. [151] Cahill L S,Chapman R P,Britten J F, et al . Li-7 NMR and two-dimensional exchange study of lithium dynamics in monoclinic Li 3 V 2 (PO 4 ) 3 [J]. Journal of Physical Chemistry B ,2006,110(14):7171-7177. [152] Wilkening M,Muhle C,Jansen M, et al . Microscopic access to long-range diffusion parameters of the fast lithium ion conductor Li 7 BiO 6 by solid state Li-7 stimulated echo NMR[J]. Journal of Physical Chemistry B ,2007,111(30):8691-8694. [153] Hayamizu K,Tsuzuki S,Seki S. Molecular motions and ion diffusions of the room-temperature ionic liquid 1,2-dimethyl-3-propylimidazolium bis(trifluoromethylsulfonyl) amide (DMPImTFSA) studied by H-1,C-13,and F-19 NMR[J]. Journal of Physical Chemistry A ,2008,112(47):12027-12036. [154] Wilkening M,Gebauer D,Heitjans P. Diffusion parameters in single-crystalline Li 3 N as probed by (6)Li and (7)Li spin-alignment echo NMR spectroscopy in comparison with results from (8)Li beta-radiation detected NMR[J]. Journal of Physics-Condensed Matter .,2008,20(2):5. [155] Wilkening M,Kuhn A,Heitjans P. Atomic-scale measurement of ultraslow Li motions in glassy LiAlSi 2 O 6 by two-time (6)Li spin-alignment echo NMR correlation spectroscopy[J]. Physical Review B ,2008,78(5):9. [156] Epp V,Wilkening M. Fast Li diffusion in crystalline LiBH 4 due to reduced dimensionality:Frequency-dependent NMR spectroscopy[J]. Physical Review B ,2010,82(2):4. [157] Hatzikraniotis E,Samaras I,Paraskevopoulos K M, et al . Lithium Intercalation Studies on MoO 3 single crystals[J]. Ionics ,1996,2(1):24-28. [158] Hirasawa K A,Nishioka K,Sato T, et al . Investigation of graphite composite anode surfaces by atomic force microscopy and related techniques[J]. Journal of Power Sources ,1997,69(1-2):97-102. [159] Hirasawa K A,Sato T,Asahina H, et al . In situ electrochemical atomic force microscope study on graphite electrodes[J]. Journal of the Electrochemical Society ,1997,144(4):L81-L84. [160] Aurbach D,Moshkovich |
[1] | 李海涛, 孔令丽, 张欣, 余传军, 王纪威, 徐琳. N/P设计对高镍NCM/Gr电芯性能的影响[J]. 储能科学与技术, 2022, 11(7): 2040-2045. |
[2] | 刘显茜, 孙安梁, 田川. 基于仿生翅脉流道冷板的锂离子电池组液冷散热[J]. 储能科学与技术, 2022, 11(7): 2266-2273. |
[3] | 陈龙, 夏权, 任羿, 曹高萍, 邱景义, 张浩. 多物理场耦合下锂离子电池组可靠性研究现状与展望[J]. 储能科学与技术, 2022, 11(7): 2316-2323. |
[4] | 易顺民, 谢林柏, 彭力. 基于VF-DW-DFN的锂离子电池剩余寿命预测[J]. 储能科学与技术, 2022, 11(7): 2305-2315. |
[5] | 祝庆伟, 俞小莉, 吴启超, 徐一丹, 陈芬放, 黄瑞. 高能量密度锂离子电池老化半经验模型[J]. 储能科学与技术, 2022, 11(7): 2324-2331. |
[6] | 王宇作, 王瑨, 卢颖莉, 阮殿波. 孔结构对软碳负极储锂性能的影响[J]. 储能科学与技术, 2022, 11(7): 2023-2029. |
[7] | 孔为, 金劲涛, 陆西坡, 孙洋. 对称蛇形流道锂离子电池冷却性能[J]. 储能科学与技术, 2022, 11(7): 2258-2265. |
[8] | 霍思达, 薛文东, 李新丽, 李勇. 基于CiteSpace知识图谱的锂电池复合电解质可视化分析[J]. 储能科学与技术, 2022, 11(7): 2103-2113. |
[9] | 邓健想, 赵金良, 黄成德. 高能量锂离子电池硅基负极黏结剂研究进展[J]. 储能科学与技术, 2022, 11(7): 2092-2102. |
[10] | 欧宇, 侯文会, 刘凯. 锂离子电池中的智能安全电解液研究进展[J]. 储能科学与技术, 2022, 11(6): 1772-1787. |
[11] | 韩俊伟, 肖菁, 陶莹, 孔德斌, 吕伟, 杨全红. 致密储能:基于石墨烯的方法学和应用实例[J]. 储能科学与技术, 2022, 11(6): 1865-1873. |
[12] | 辛耀达, 李娜, 杨乐, 宋维力, 孙磊, 陈浩森, 方岱宁. 锂离子电池植入传感技术[J]. 储能科学与技术, 2022, 11(6): 1834-1846. |
[13] | 燕乔一, 吴锋, 陈人杰, 李丽. 锂离子电池负极石墨回收处理及资源循环[J]. 储能科学与技术, 2022, 11(6): 1760-1771. |
[14] | 沈秀, 曾月劲, 李睿洋, 李佳霖, 李伟, 张鹏, 赵金保. γ射线辐照交联原位固态化阻燃锂离子电池[J]. 储能科学与技术, 2022, 11(6): 1816-1821. |
[15] | 丁奕, 杨艳, 陈锴, 曾涛, 黄云辉. 锂离子电池智能消防及其研究方法[J]. 储能科学与技术, 2022, 11(6): 1822-1833. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||