储能科学与技术 ›› 2025, Vol. 14 ›› Issue (5): 1850-1857.doi: 10.19799/j.cnki.2095-4239.2024.1046

• 储能材料与器件 • 上一篇    下一篇

高韧性高导电PTFE基干法自支撑膜技术研究

高桂红1,2(), 李珅珅2, 张薇1, 梁圣杰1, 韩甜1, 巫湘坤2,3   

  1. 1.郑州中科新兴产业技术研究院,河南省储能材料与过程重点实验室
    2.龙子湖新能源实验室,河南 郑州 450003
    3.中国科学院过程工程研究所,离子液体清洁过程北京重点实验室,北京 100190
  • 收稿日期:2024-11-07 修回日期:2024-11-23 出版日期:2025-05-28 发布日期:2025-05-21
  • 通讯作者: 高桂红 E-mail:1019660339@qq.com
  • 作者简介:高桂红(1985—),女,硕士,高级工程师,研究动力与储能电池原材料、新工艺新技术,E-mail:1019660339@qq.com
  • 基金资助:
    河南省科技攻关(242102241044);河南省重点研发计划(221111240100);河南省重点研发专项(241111241500)

Research on self-supporting membrane technology of high toughness and high conductivity PTFE based dry method

Guihong GAO1,2(), Shenshen LI2, Wei ZHANG1, Shengjie LIANG1, Tian HAN1, Xiangkun WU2,3   

  1. 1.Zhengzhou Institute of Emerging Industrial Technology, Henan Key Laboratory of Energy Storage Materials and Processes
    2.Long Zi Hu New Energy Laboratory, Zhengzhou 450003, Henan, China
    3.Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
  • Received:2024-11-07 Revised:2024-11-23 Online:2025-05-28 Published:2025-05-21
  • Contact: Guihong GAO E-mail:1019660339@qq.com

摘要:

基于聚四氟乙烯可纤维化的特性,先将原材料预纤维化形成均匀的混合物后经热辊压的方法制备了干法自支撑膜。通过此方法制备的干法膜片厚度达到120~200 μm,负载量达到36~60 mg/cm2,面载量7.26~12.11 mAh/cm2,是目前商业化湿法电极面载量的2~4倍;膜片的表面、截面扫描电镜显示原颗粒状的聚四氟乙烯黏结剂在混合和热压过程被充分地纤维化,制备过程中形成的纳米纤维状黏结剂在电极膜中均匀分布,聚四氟乙烯纤维丝、导电剂广泛地围绕在活性颗粒的周围,并在膜片内形成充裕的“3D”网状结构;膜片具有良好的亲液性能,测量的光学接触角介于97°~112°;此膜电极片具有较强的力学性能,最大拉断力为2.64 MPa,膜片伸长率高达34.64%,较好的力学性能完全可以应用于卷绕等工序中保持膜片的完整性;膜片具有低至13.58 mΩ·cm的电子电阻率;200 μm的超厚电极0.05C充放电的首次充放电效率为87.51%,放电比容量为209.60 mAh/g,1C倍率下放电克容量最高为160 mAh/g。通过本研究,认为聚四氟乙烯纤维化技术推进低成本规模化电极制备技术是可行的,为能源的高效利用提供了可靠的解决方案。

关键词: 干法技术, 自支撑膜, 聚四氟乙烯, 高韧性, 高导电

Abstract:

Polytetrafluoroethylene fibrosability was utilized to create a dry, self-supporting film by prefibrosing the raw material into a uniform mixture, followed by hot roller pressing. The resulting dry diaphragm achieved a thickness of 120—200 μm and a surface weight capacity of 36—60 mg/cm2, 2—4 times higher than current commercial wet electrode surface loads. Scanning electron microscopy (SEM) analysis of the membrane's surface and cross-section showed that the original granular polytetrafluoroethylene binder was fully fibrosed during mixing and hot pressing. The nanofibrous binder, formed during the preparation process, was evenly distributed across the electrode film, with polytetrafluoroethylene fibers and the conductive agent surrounding active particles, creating an abundant "3D" network structure. The diaphragm displayed excellent lyophilic properties, with measured optical contact angles ranging from 97° and 112°. The membrane electrode exhibited strong mechanical properties, with a maximum tensile force of 2.64 MPa, and an elongation is of 34.64%, ensuring the film's integrity during the winding process. The electronic resistivity of the diaphragm is as low as 13.58 mΩ·cm. For the 200 μm super-thick electrode, the first charge-discharge efficiency reached 87.51%, with a specific discharge capacity of 209.60 mAh/g, and a maximum discharge gram capacity of 160mAh/g at 1C ratio. This study demonstrates the feasibility of polytetrafluoroethylene fibrosis for advancing low-cost, large-scale electrode preparation technology, and provides a reliable solution for the efficient use of energy.

Key words: dry technique, self-supporting film, polytetrafluoroethylene, high toughness, high conductivity

中图分类号: