1 |
ARMAND M, TARASCON J M. Building better batteries[J]. Nature, 2008, 451(7179): 652-657. DOI: 10.1038/451652a.
|
2 |
VAN N R. The rechargeable revolution: A better battery[J]. Nature, 2014, 507(7490): 26-28. DOI: 10.1038/507026a.
|
3 |
DUNN B, KAMATH H, TARASCON J M. Electrical energy storage for the grid: A battery of choices[J]. Science, 2011, 334(6058): 928-935. DOI: 10.1126/science.1212741.
|
4 |
GOODENOUGH J B, KIM Y. Challenges for rechargeable Li batteries[J]. Chemistry of Materials, 2010, 22(3): 587-603. DOI: 10.1021/cm901452z.
|
5 |
GOODENOUGH J B, PARK K S. The Li-ion rechargeable battery: A perspective[J]. Journal of the American Chemical Society, 2013, 135(4): 1167-1176. DOI: 10.1021/ja3091438.
|
6 |
BARRÉ A, DEGUILHEM B, GROLLEAU S, et al. A review on lithium-ion battery ageing mechanisms and estimations for automotive applications[J]. Journal of Power Sources, 2013, 241: 680-689. DOI: 10.1016/j.jpowsour.2013.05.040.
|
7 |
WOOD D L, QUASS J D, LI J L, et al. Technical and economic analysis of solvent-based lithium-ion electrode drying with water and NMP[J]. Drying Technology, 2018, 36(2): 234-244. DOI: 10. 1080/07373937.2017.1319855.
|
8 |
COURTEL F M, NIKETIC S, DUGUAY D, et al. Water-soluble binders for MCMB carbon anodes for lithium-ion batteries[J]. Journal of Power Sources, 2011, 196(4): 2128-2134. DOI: 10. 1016/j.jpowsour.2010.10.025.
|
9 |
HAUFROID V, JAEGER V K, JEGGLI S, et al. Biological monitoring and health effects of low-level exposure to N-methyl-2-pyrrolidone: A cross-sectional study[J]. International Archives of Occupational and Environmental Health, 2014, 87(6): 663-674. DOI: 10.1007/s00420-013-0906-5.
|
10 |
WOOD D L, WOOD M, LI J L, et al. Perspectives on the relationship between materials chemistry and roll-to-roll electrode manufacturing for high-energy lithium-ion batteries[J]. Energy Storage Materials, 2020, 29: 254-265. DOI: 10.1016/j.ensm. 2020. 04.036.
|
11 |
KATO Y, SHIOTANI S, MORITA K, et al. All-solid-state batteries with thick electrode configurations[J]. The Journal of Physical Chemistry Letters, 2018, 9(3): 607-613. DOI: 10.1021/acs.jpclett. 7b02880.
|
12 |
HIPPAUF F, SCHUMM B, DOERFLER S, et al. Overcoming binder limitations of sheet-type solid-state cathodes using a solvent-free dry-film approach[J]. Energy Storage Materials, 2019, 21: 390-398. DOI: 10.1016/j.ensm.2019.05.033.
|
13 |
SCHÄLICKE G, LANDWEHR I, DINTER A, et al. Solvent-free manufacturing of electrodes for lithium-ion batteries via electrostatic coating[J]. Energy Technology, 2020, 8(2): 1900309. DOI: 10.1002/ente.201900309.
|
14 |
WU Q, ZHENG J P, HENDRICKSON M, et al. Dry process for fabricating low cost and high performance electrode for energy storage devices[J]. MRS Advances, 2019, 4(15): 857-863. DOI: 10.1557/adv.2019.29.
|
15 |
张冬冬, 洪东升, 李婷婷. 干法电极制备技术的研究现状[J]. 电池, 2022, 52(4): 471-474. DOI: 10.19535/j.1001-1579.2022.04.026.
|
|
ZHANG D D, HONG D S, LI T T. Research status quo of dry electrode preparation technique[J]. Battery Bimonthly, 2022, 52(4): 471-474. DOI: 10.19535/j.1001-1579.2022.04.026.
|
16 |
YONAGA A, KAWAUCHI S, MORI Y, et al. Effects of dry powder mixing on electrochemical performance of lithium-ion battery electrode using solvent-free dry forming process[J]. Journal of Power Sources, 2023, 581: 233466. DOI: 10.1016/j.jpowsour. 2023. 233466.
|
17 |
WENZEL V, MOELLER R S, NIRSCHL H. Influence of mixing technology and the potential to modify the morphological properties of materials used in the manufacture of lithium-ion batteries[J]. Energy Technology, 2014, 2(2): 176-182. DOI: 10. 1002/ente.201300091.
|
18 |
BOCKHOLT H, HASELRIEDER W, KWADE A. Intensive powder mixing for dry dispersing of carbon black and its relevance for lithium-ion battery cathodes[J]. Powder Technology, 2016, 297: 266-274. DOI: 10.1016/j.powtec.2016.04.011.
|
19 |
WENZEL V, NIRSCHL H, NÖTZEL D. Challenges in lithium-ion-battery slurry preparation and potential of modifying electrode structures by different mixing processes[J]. Energy Technology, 2015, 3(7): 692-698. DOI: 10.1002/ente.201402218.
|
20 |
LI Y X, WU Y J, WANG Z X, et al. Progress in solvent-free dry-film technology for batteries and supercapacitors[J]. Materials Today, 2022, 55: 92-109. DOI: 10.1016/j.mattod.2022.04.008.
|
21 |
HAWLEY W B, LI J L. Electrode manufacturing for lithium-ion batteries—Analysis of current and next generation processing[J]. Journal of Energy Storage, 2019, 25: 100862. DOI: 10.1016/j.est. 2019.100862.
|
22 |
MITCHELL P, XIAOMEI XI, ZHONG L D, et al. Dry-particle based adhesive and dry film and methods of making same: US2015007 2234[P]. 2015-03-12.
|
23 |
胡文, 李柱, 刘妍娜, 等. 硫化物固态电解质薄膜的室温干法制备和全固态电池性能[J]. 电源技术, 2024, 48(8): 1619-1627.
|
|
HU W, LI Z, LIU Y N, et al. Preparation and all-solid-state battery performance of sulfide solid electrolyte membranes via a solvent-free approach at room temperature[J]. Chinese Journal of Power Sources, 2024, 48(8): 1619-1627.
|
24 |
NAM Y J, OH D Y, JUNG S H, et al. Toward practical all-solid-state lithium-ion batteries with high energy density and safety: Comparative study for electrodes fabricated by dry- and slurry-mixing processes[J]. Journal of Power Sources, 2018, 375: 93-101. DOI: 10.1016/j.jpowsour.2017.11.031.
|
25 |
TAO R M, STEINHOFF B, SAWICKI C H, et al. Unraveling the impact of the degree of dry mixing on dry-processed lithium-ion battery electrodes[J]. Journal of Power Sources, 2023, 580: 233379. DOI: 10.1016/j.jpowsour.2023.233379.
|
26 |
国家市场监督管理总局, 国家标准化管理委员会. 锂离子电池用聚烯烃隔膜: GB/T 36363—2018[S]. 北京: 中国标准出版社, 2018.Standardization Administration of the People's Republic of China. Polyolefin separator for lithium-ion battery: GB/T 36363—2018[S]. Beijing: Standards Press of China, 2018.
|
27 |
KULCSÁR S, ÁGH J, FAZEKAS Á, et al. Microstructure of plastic bonded nickel electrodes[J]. Journal of Power Sources, 1982, 8(1): 55-59. DOI: 10.1016/0378-7753(82)80007-4.
|
28 |
甄恩萌. 高比能锂离子电池正极极片低成本制备工艺研究[D]. 南京: 南京航空航天大学, 2022.
|
|
ZHEN E M. Low-cost preparation of cathode electrodes for high specific energy lithium-ion battery[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2022.
|
29 |
LIU Y T, GONG X T, PODDER C, et al. Roll-to-roll solvent-free manufactured electrodes for fast-charging batteries[J]. Joule, 2023, 7(5): 952-970. DOI: 10.1016/j.joule.2023.04.006.
|
30 |
RYU M, HONG Y K, LEE S Y, et al. Ultrahigh loading dry-process for solvent-free lithium-ion battery electrode fabrication[J]. Nature Communications, 2023, 14: 1316. DOI: 10.1038/s41467-023-37009-7.
|
31 |
LIANG Z M, LI T Y, CHI H, et al. Solvent-free manufacturing of lithium-ion battery electrodes via cold plasma[J]. Energy & Environmental Materials, 2024, 7(1): e12503. DOI: 10.1002/eem 2.12503.
|
32 |
李静. 高安全性聚酰亚胺基锂离子电池隔膜的制备及其性能研究[D]. 上海: 东华大学, 2023.
|
|
LI J. Preparation and performance of high safety polyimide based lithium-ion battery separator[D]. Shanghai: Dong hua university, 2023.
|
33 |
ZHOU H T, LIU M H, GAO H Q, et al. Dense integration of solvent-free electrodes for Li-ion supercabattery with boosted low temperature performance[J]. Journal of Power Sources, 2020, 473: 228553. DOI: 10.1016/j.jpowsour.2020.228553.
|
34 |
李焱, 于俊荣, 刘兆峰. 聚酰胺酸的合成及其酰亚胺化研究[J]. 合成纤维, 2006, 35(4): 6-9. DOI: 10.3969/j.issn.1001-7054.2006.04.002.
|
|
LI Y, YU J R, LIU Z F. Study on the synthesis and imidization of poly(amic acid)[J]. Synthetic Fiber in China, 2006, 35(4): 6-9. DOI: 10.3969/j.issn.1001-7054.2006.04.002.
|
35 |
JIANG F J, NIE Y, YIN L, et al. Core-shell-structured nanofibrous membrane as advanced separator for lithium-ion batteries[J]. Journal of Membrane Science, 2016, 510: 1-9. DOI: 10.1016/j.memsci.2016.02.067.
|