储能科学与技术 ›› 2025, Vol. 14 ›› Issue (5): 1858-1865.doi: 10.19799/j.cnki.2095-4239.2024.1143

• 储能材料与器件 • 上一篇    下一篇

双添加剂协同提升钠离子电池循环稳定性

刘德帅1(), 朱慧琴1, 孙睿浩1, 李蒙2, 巩文豪2, 李晓辉2, 钱伟伟2,3()   

  1. 1.郑州中科新兴产业技术研究院,河南省储能材料与过程重点实验室
    2.龙子湖新能源实验室,氢能储能中心,河南 郑州 450003
    3.中国科学院过程工程研究所,离子液体清洁过程国家重点实验室,北京 100190
  • 收稿日期:2024-12-02 修回日期:2024-12-25 出版日期:2025-05-28 发布日期:2025-05-21
  • 通讯作者: 钱伟伟 E-mail:dsliu@ipe.ac.cn;wwqian@ipe.ac.cn
  • 作者简介:刘德帅(1993—),男,硕士,工程师,研究方向为锂/钠离子电池电解液研发,E-mail:dsliu@ipe.ac.cn
  • 基金资助:
    河南省重大科技专项(241100240200);国家自然科学基金专项(42341204)

Synergistic dual-additive boost cyclability of sodium-ion batteries

Deshuai LIU1(), Huiqin ZHU1, Ruihao SUN1, Meng LI2, Wenhao GONG2, Xiaohui LI2, Weiwei QIAN2,3()   

  1. 1.Zhengzhou Institute of Emerging Industrial Technology, Henan Key Laboratory of Energy Storage Materials and Processes
    2.Longzihu New Energy Laboratory, Hydrogen Energy Storage Center, Zhengzhou 450003, Henan, China
    3.Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
  • Received:2024-12-02 Revised:2024-12-25 Online:2025-05-28 Published:2025-05-21
  • Contact: Weiwei QIAN E-mail:dsliu@ipe.ac.cn;wwqian@ipe.ac.cn

摘要:

电解液不仅影响离子传递过程,还参与电极/电解液界面膜的形成,对电池的循环稳定性起着重要作用,其中,电解液添加剂是参与电极/电解液界面构筑的主要成分。相较于锂离子电池,钠离子电池电解液及其添加剂的研究仍存在许多问题。本文通过对电解液添加剂氟代碳酸乙烯酯(FEC)和1,3-丙烷磺酸内酯(PS)的深入研究,分析了不同添加剂组成的电解液对电池性能的影响。研究发现,含有FEC+PS双添加剂电解液的软包电池1 C循环600周后的容量保持率高达85.1%,其循环性能明显优于不使用任何添加剂或单独加FEC添加剂的电池,有效提升了NaNi1/3Fe1/3Mn1/3O2(NFM)||硬碳(HC)软包电池的循环性能。通过电极界面分析发现,FEC-PS双添加剂衍生的含有烷基磺酸钠(ROSO2Na)和氟化钠(NaF)的CEI/SEI膜,具有较高的机械强度和良好的柔韧性,极大提升了电极/电解液界面的稳定性,有效抑制了循环过程中NFM正极过渡金属溶出和HC负极析钠,同时缓解了软包电池产气的问题。本研究在软包电池的基础上调控添加剂组成,优化电极/电解液界面组分,改善了电池界面稳定性和循环性能,为开发高性能钠离子电池电解液提供了理论及技术支撑。

关键词: 钠离子电池, 软包电池, 电解液添加剂, 电极/电解液界面

Abstract:

Electrolytes not only affect ion transfer processes but also participate in the formation of electrode-electrolyte interphases, which play an important role in the stability of battery cycling. Electrolyte additives play a crucial role in constructing electrode-electrolyte interphases; however, compared with lithium-ion batteries, numerous challenges remain in the research of sodium-ion battery electrolytes and their additives. In this study, fluoroethylene carbonate (FEC) and 1,3-propylene sultone (PS) were investigated as electrolyte additives for sodium-ion batteries. The effects of electrolytes with different additives on battery performance were analyzed. The results demonstrated that using an optimized FEC+PS dual-additive electrolyte formulation, the pouch cell maintained 85.1% capacity retention after 600 cycles at 1 C, and its cycle performance was significantly better than that of batteries without any additive or with FEC additive alone. This formulation significantly enhanced the lifespan of NaNi1/3Fe1/3Mn1/3O2 (NFM) || Hard carbon (HC) cells. Transmission electron microscopy and X-ray photoelectron spectroscopy analyses revealed that CEI/SEI containing sodium alkyl sulfonate (ROSO2Na) and sodium fluoride (NaF) derived from FEC-PS dual-additive exhibited high mechanical stability and flexibility. These properties significantly enhance the interface stability of the electrode-electrolyte, efficiently suppressing the dissolution of NFM-positive transition metals and HC-negative Na dendrites during the cycle and alleviating the gas production of the pouch cell. Based on the pouch cell, the components of the electrode-electrolyte interphase were optimized by adjusting the additive composition. This approach enhanced both the stability of the battery interphase and its cycling performance, thereby providing theoretical and technical support for the advancement of high-performance sodium-ion battery electrolytes.

Key words: sodium-ion battery, pouch cell, electrolyte additive, electrode-electrolyte interphase

中图分类号: