1 |
容晓晖, 陆雅翔, 戚兴国, 等. 钠离子电池: 从基础研究到工程化探索[J]. 储能科学与技术, 2020, 9(2): 515-522. DOI: 10.19799/j.cnki.2095-4239.2020.0054.
|
|
RONG X H, LU Y X, QI X G, et al. Na-ion batteries: From fundamental research to engineering exploration[J]. Energy Storage Science and Technology, 2020, 9(2): 515-522. DOI: 10.19799/j.cnki.2095-4239.2020.0054.
|
2 |
WANG P F, YOU Y, YIN Y X, et al. Layered oxide cathodes for sodium-ion batteries: Phase transition, air stability, and performance[J]. Advanced Energy Materials, 2018, 8(8): 1701912. DOI: 10.1002/aenm.201701912.
|
3 |
CHEN D Q, ZHANG W, LUO K Y, et al. Hard carbon for sodium storage: Mechanism and optimization strategies toward commercialization[J]. Energy & Environmental Science, 2021, 14(4): 2244-2262. DOI: 10.1039/D0EE03916K.
|
4 |
WANG E H, NIU Y B, YIN Y X, et al. Manipulating electrode/electrolyte interphases of sodium-ion batteries: Strategies and perspectives[J]. ACS Materials Letters, 2021, 3(1): 18-41. DOI: 10.1021/acsmaterialslett.0c00356.
|
5 |
LI Y Q, YANG Y, LU Y X, et al. Ultralow-concentration electrolyte for Na-ion batteries[J]. ACS Energy Letters, 2020, 5(4): 1156-1158. DOI: 10.1021/acsenergylett.0c00337.
|
6 |
ZHANG Q M, WANG Z X, LI X H, et al. Comparative study of 1, 3-propane sultone, prop-1-ene-1, 3-sultone and ethylene sulfate as film-forming additives for sodium ion batteries[J]. Journal of Power Sources, 2022, 541: 231726. DOI: 10.1016/j.jpowsour. 2022.231726.
|
7 |
FAN J J, DAI P, SHI C G, et al. Synergistic dual-additive electrolyte for interphase modification to boost cyclability of layered cathode for sodium ion batteries[J]. Advanced Functional Materials, 2021, 31(17): 2010500. DOI: 10.1002/adfm. 202010500.
|
8 |
LIU Y H, ZHANG Y H, MA J, et al. Challenges and strategies toward practical application of layered transition metal oxide cathodes for sodium-ion batteries[J]. Chemistry of Materials, 2024, 36(1): 54-73. DOI: 10.1021/acs.chemmater.3c02115.
|
9 |
KIM K, PARK I, HA S Y, et al. Understanding the thermal instability of fluoroethylene carbonate in LiPF6-based electrolytes for lithium ion batteries[J]. Electrochimica Acta, 2017, 225: 358-368. DOI: 10.1016/j.electacta.2016.12.126.
|
10 |
LI Y N, WEN B, LI N, et al. Electrolyte engineering to construct robust interphase with high ionic conductivity for wide temperature range lithium metal batteries[J]. Angewandte Chemie International Edition, 2025, 64(2): e202414636. DOI: 10.1002/anie.202414636.
|
11 |
TAO L, RUSSELL J A, XIA D W, et al. Reversible switch in charge storage enabled by selective ion transport in solid electrolyte interphase[J]. Journal of the American Chemical Society, 2023, 145(30): 16538-16547. DOI: 10.1021/jacs.3c03429.
|
12 |
CHE H Y, YANG X R, WANG H, et al. Long cycle life of sodium-ion pouch cell achieved by using multiple electrolyte additives[J]. Journal of Power Sources, 2018, 407: 173-179. DOI: 10.1016/j.jpowsour.2018.08.025.
|
13 |
ZHANG L T, TSOLAKIDOU C, MARIYAPPAN S, et al. Unraveling gas evolution in sodium batteries by online electrochemical mass spectrometry[J]. Energy Storage Materials, 2021, 42: 12-21. DOI: 10.1016/j.ensm.2021.07.005.
|