1 |
吕杰, 王敬翰, 宋文吉, 等. 储能用锂离子电池电热耦合模型研究进展[J]. 电池, 2023, 53(6): 668-672. DOI: 10.19535/j.1001-1579. 2023.06.018.
|
|
LYU J, WANG J H, SONG W J, et al. Advances in electro-thermal coupling models for energy storage Li-ion battery[J]. Battery Bimonthly, 2023, 53(6): 668-672. DOI: 10.19535/j.1001-1579. 2023.06.018.
|
2 |
刘青, 梁新龙, 韦鹏, 等. 某三元锂离子电池挤压安全阈值试验研究[J]. 电源技术, 2023, 47(10): 1286-1289.
|
|
LIU Q, LIANG X L, WEI P, et al. Experimental study on extrusion safety threshold of ternary lithium ion battery[J]. Chinese Journal of Power Sources, 2023, 47(10): 1286-1289.
|
3 |
ELALFY D A, GOUDA E, KOTB M F, et al. Comprehensive review of energy storage systems technologies, objectives, challenges, and future trends[J]. Energy Strategy Reviews, 2024, 54: 101482. DOI: 10.1016/j.esr.2024.101482.
|
4 |
ZHU J T, FENG G Z, ZHOU W M, et al. Simulation analysis and optimization of containerized energy storage battery thermal management system[J]. Journal of Energy Storage, 2024, 97: 112870. DOI: 10.1016/j.est.2024.112870.
|
5 |
LI Z, ZHANG H, SHENG L, et al. Liquid-immersed thermal management to cylindrical lithium-ion batteries for their pack applications[J]. Journal of Energy Storage, 2024, 85: 111060. DOI: 10.1016/j.est.2024.111060.
|
6 |
全球锂电池行业发展分析预测[J]. 资源再生, 2018(11): 31-33.
|
|
Global lithium battery industry development analysis forecast[J]. Resource Recycling, 2018(11): 31-33.
|
7 |
XU Y B, WANG Y J, CHEN X Z, et al. Thermal runaway and soot production of lithium-ion batteries: Implications for safety and environmental concerns[J]. Applied Thermal Engineering, 2024, 248: 123193. DOI: 10.1016/j.applthermaleng.2024.123193.
|
8 |
E J Q, XIAO H X, TIAN S C, et al. A comprehensive review on thermal runaway model of a lithium-ion battery: Mechanism, thermal, mechanical, propagation, gas venting and combustion[J]. Renewable Energy, 2024, 229: 120762. DOI: 10.1016/j.renene.2024.120762.
|
9 |
LAKHOTIA V K, SENTHIL KUMAR R. Review on various types of battery thermal management systems[J]. Journal of Thermal Analysis and Calorimetry, 2023, 148(22): 12335-12368. DOI: 10.1007/s10973-023-12561-y.
|
10 |
DU J L, TAO H L, CHEN Y X, et al. Thermal management of air-cooling lithium-ion battery pack[J]. Chinese Physics Letters, 2021, 38(11): 118201. DOI: 10.1088/0256-307X/38/11/118201.
|
11 |
LI Z C, ZHANG Y A, ZHANG S F, et al. Phase change materials for lithium-ion battery thermal management systems: A review[J]. Journal of Energy Storage, 2024, 80: 110259. DOI: 10.1016/j.est.2023.110259.
|
12 |
李嘉鑫, 李鹏钊, 王苗, 等. 锂离子电池热管理技术研究进展[J]. 过程工程学报, 2023, 23(8): 1102-1117.
|
|
LI J X, LI P Z, WANG M, et al. Research progress of thermal management technology for lithium-ion batteries[J]. The Chinese Journal of Process Engineering, 2023, 23(8): 1102-1117.
|
13 |
TANG X W, GUO Q, LI M, et al. Performance analysis on liquid-cooled battery thermal management for electric vehicles based on machine learning[J]. Journal of Power Sources, 2021, 494: 229727. DOI: 10.1016/j.jpowsour.2021.229727.
|
14 |
ANISHA, KUMAR A. Identification and mitigation of shortcomings in direct and indirect liquid cooling-based battery thermal management system[J]. Energies, 2023, 16(9): 3857. DOI: 10.3390/en16093857.
|
15 |
王紫啸, 张振东, 盛雷. 锂离子电池浸没式热管理性能仿真研究[J]. 低温与超导, 2023, 51(12): 64-72. DOI: 10.16711/j.1001-7100.2023.12.010.
|
|
WANG Z X, ZHANG Z D, SHENG L. Simulation study on the performance of submerged thermal management of lithium-ion batteries[J]. Cryogenics & Superconductivity, 2023, 51(12): 64-72. DOI: 10.16711/j.1001-7100.2023.12.010.
|
16 |
KANG R X, JIA C X, ZHAO J L, et al. Effects of capacity on the thermal runaway and gas venting behaviors of large-format lithium iron phosphate batteries induced by overcharge[J]. Journal of Energy Storage, 2024, 87: 111523. DOI: 10.1016/j.est.2024.111523.
|
17 |
郭豪文. 纯电动汽车浸没式液体冷却电池包的模拟与实验研究[D]. 杭州: 浙江大学, 2022.
|
18 |
盛雷. 车用锂离子电池的热物性、热行为与液冷式热管理研究[D]. 上海: 上海理工大学, 2020.
|