储能科学与技术 ›› 2025, Vol. 14 ›› Issue (5): 1866-1874.doi: 10.19799/j.cnki.2095-4239.2024.1056

• 储能材料与器件 • 上一篇    下一篇

储能用锂电池浸没式热性能调控仿真及热安全实验研究

周海洋1(), 张振东1(), 盛雷1, 朱泽华1, 张晓军2, 张春风2   

  1. 1.上海理工大学机械工程学院,上海 200093
    2.山西潞安太行润滑科技股份有限公司,山西 长治 046011
  • 收稿日期:2024-11-11 修回日期:2024-12-11 出版日期:2025-05-28 发布日期:2025-05-21
  • 通讯作者: 张振东 E-mail:z_hy980926@163.com;usstzzd@usst.edu.cn
  • 作者简介:周海洋(1998—),男,硕士研究生,研究方向为电池热管理,E-mail:z_hy980926@163.com
  • 基金资助:
    国家自然科学基金项目(52472381);国家自然科学青年基金(52206267);中国博士后面上基金(2021M702191)

Simulation of immersion thermal performance regulation and thermal safety experimental study for energy storage lithium batteries

Haiyang ZHOU1(), Zhendong ZHANG1(), Lei SHENG1, Zehua ZHU1, Xiaojun ZHANG2, Chunfeng ZHANG2   

  1. 1.School of Mechanical Engineering, Shanghai University of Technology, Shanghai 200093, China
    2.Shanxi Lu'an Taihang Lubricant Co. , Ltd. , Changzhi 046011, Shanxi, China
  • Received:2024-11-11 Revised:2024-12-11 Online:2025-05-28 Published:2025-05-21
  • Contact: Zhendong ZHANG E-mail:z_hy980926@163.com;usstzzd@usst.edu.cn

摘要:

针对户储用5 kWh电池插箱在工作过程中温升和温差过大的问题,设计了一种浸没式内胆箱体模型,该模型直接将电池浸泡其中,再与外部电池包进行电气连接。在内胆中,研究了静态浸没下电池间距、浸没高度比以及放电倍率对常规冷却性能的影响。此外,还对该模型的热安全性能进行了实验研究。结果表明:当电池间距为2.5 mm时,电池模组的温度均匀性显著改善;当电池100%浸没时,可以获得最佳冷却效果;当电池模组以0.5 C、1.0 C以及1.5 C放电,完全浸没的电池模组最大温度较无浸没时显著降低,电池模组的温度均匀性也得到了极大的改善。随后通过实验验证了常规液冷模型的准确性,仿真与实验之间的最大偏差为1.29 ℃。最后,由过充热失控扩散性能实验可知该冷却方法可以有效地抑制热失控蔓延。

关键词: 锂离子电池, 浸没式热管理, 数值模拟, 热蔓延抑制

Abstract:

To address the challenges of temperature rise and excessive temperature differences during the operation of a 5 kWh household storage battery plug-in box, a submerged inner tank model was designed. The model allows the batteries to be directly immersed in a cooling medium, while maintaining electrical connectivity to an external battery pack. The study investigated how battery spacing, immersion height ratio, and discharge rate impact cooling performance during static immersion in the inner tank. In addition, the thermal safety performance of the model was experimentally analyzed. Results revealed that a battery spacing of 2.5 mm significantly improves temperature uniformity within the battery module. Optimal cooling performance was achieved when the batteries were 100% submerged. Discharging the fully immersed battery module at 0.5 C, 1.0 C, and 1.5 C notably reduced the maximum temperature compared to non-immersed conditions, while also greatly improving temperature uniformity. Subsequently, the accuracy of the conventional liquid cooling model was verified through experiments, with the simulation results closely aligning with experimental data, showing a maximum deviation of only 1.29 ℃. Finally, overcharge thermal runaway diffusion experiments demonstrated that this cooling method effectively suppresses the spread of thermal runaway.

Key words: lithium-ion battery, immersion thermal management, numerical simulation, thermal propagation suppression

中图分类号: