储能科学与技术 ›› 2025, Vol. 14 ›› Issue (6): 2320-2335.doi: 10.19799/j.cnki.2095-4239.2024.1223

• 储能材料与器件 • 上一篇    下一篇

水系锌离子电池正极的改性策略及发展展望

尹朝莛(), 郭威(), 王金鑫, 孟洋   

  1. 西北工业大学化学与化工学院,陕西 西安 710129
  • 收稿日期:2024-12-24 修回日期:2025-01-05 出版日期:2025-06-28 发布日期:2025-06-27
  • 通讯作者: 郭威 E-mail:qujiang000@126.com;weiguo-nwpu@nwpu.edu.cn
  • 作者简介:尹朝莛(1999—),男,硕士研究生,研究方向为水系锌离子电池先进材料的设计开发,E-mail:qujiang000@126.com
  • 基金资助:
    国家自然科学基金(51673156)

Modification strategies and development prospects for positive electrodes for aqueous zinc-ion batteries

Zhaoting YIN(), Wei GUO(), Jinxin WANG, Yang MENG   

  1. College of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, Shaanxi, China
  • Received:2024-12-24 Revised:2025-01-05 Online:2025-06-28 Published:2025-06-27
  • Contact: Wei GUO E-mail:qujiang000@126.com;weiguo-nwpu@nwpu.edu.cn

摘要:

伴随着国家“碳达峰”和“碳中和”战略的实施,新型电化学储能技术的开发已成为新型电力系统和能源转型的重要支撑。在各种储能设备中,水系锌离子电池具有资源丰富、理论比容量高、经济性和安全性好等优点而受到广泛关注,但其快速发展亟待在电极材料的技术难题上实现突破。现阶段的水系锌离子电池正极材料普遍存在三方面的问题,这使其难以在复杂服役条件下高性能长续航应用。本文从水系锌离子电池的发展历程出发,通过对近期相关文献的探讨,系统阐述了水系锌离子电池正极材料常见的四类储能机制,总结了锰基材料、钒基材料、有机材料三类常见正极材料存在的固有电导率低、离子传输速度慢、材料结构稳定性差等问题,重点介绍了构建新颖微观结构、氧空位浓度调控、层间结构调控、增加材料疏水性四种性能提升策略及相应的研究进展,最后,展望了正极材料的发展前景和材料复合方法、研究领域拓展和表征测试技术等方面的具体研究方向,为高性能水系锌离子电池的设计开发提供参考和借鉴。

关键词: 水系锌离子正极, 储能机制, 调控策略

Abstract:

With the implementation of the national "carbon peak" and "carbon neutrality" policies, the development of new electrochemical energy-storage technologies has become an important aspect of support for the new power system and for energy transformation. Among various energy-storage devices, aqueous zinc-ion batteries (AZIBs) are attracting widespread attention due to their abundant resources, high theoretical specific capacity, high safety, and cost effectiveness. However, their rapid development urgently requires breakthroughs in the technical challenges of electrode materials. At present, there are three common problems with positive-electrode materials for AZIBs, which make it difficult to apply them with high-performance and long endurance under complex service conditions. In this article, starting from the development history of AZIBs, we systematically elaborate on four common energy-storage mechanisms of positive-electrode materials for AZIBs through the exploration of recent relevant literature. We then summarize the inherently low conductivity, slow ion-transport speed, and poor structural stability of three common positive-electrode materials: manganese-based materials, vanadium-based materials, and organic materials. We also focus on four improvement strategies and discuss the corresponding progress, including the construction of novel microstructures, regulation of the oxygen-vacancy concentration, regulation of the interlayer structure, and increasing the material hydrophobicity. Finally, we discuss the research prospects for, and specific directions in, composite materials, expansion of the research field, and characterization-testing technology, providing references and inspiration for the design and development of high-performance AZIBs.

Key words: aqueous zinc-ion battery cathode, energy storage mechanisms, modulation strategies

中图分类号: