储能科学与技术 ›› 2025, Vol. 14 ›› Issue (6): 2320-2335.doi: 10.19799/j.cnki.2095-4239.2024.1223
收稿日期:
2024-12-24
修回日期:
2025-01-05
出版日期:
2025-06-28
发布日期:
2025-06-27
通讯作者:
郭威
E-mail:qujiang000@126.com;weiguo-nwpu@nwpu.edu.cn
作者简介:
尹朝莛(1999—),男,硕士研究生,研究方向为水系锌离子电池先进材料的设计开发,E-mail:qujiang000@126.com;
基金资助:
Zhaoting YIN(), Wei GUO(
), Jinxin WANG, Yang MENG
Received:
2024-12-24
Revised:
2025-01-05
Online:
2025-06-28
Published:
2025-06-27
Contact:
Wei GUO
E-mail:qujiang000@126.com;weiguo-nwpu@nwpu.edu.cn
摘要:
伴随着国家“碳达峰”和“碳中和”战略的实施,新型电化学储能技术的开发已成为新型电力系统和能源转型的重要支撑。在各种储能设备中,水系锌离子电池具有资源丰富、理论比容量高、经济性和安全性好等优点而受到广泛关注,但其快速发展亟待在电极材料的技术难题上实现突破。现阶段的水系锌离子电池正极材料普遍存在三方面的问题,这使其难以在复杂服役条件下高性能长续航应用。本文从水系锌离子电池的发展历程出发,通过对近期相关文献的探讨,系统阐述了水系锌离子电池正极材料常见的四类储能机制,总结了锰基材料、钒基材料、有机材料三类常见正极材料存在的固有电导率低、离子传输速度慢、材料结构稳定性差等问题,重点介绍了构建新颖微观结构、氧空位浓度调控、层间结构调控、增加材料疏水性四种性能提升策略及相应的研究进展,最后,展望了正极材料的发展前景和材料复合方法、研究领域拓展和表征测试技术等方面的具体研究方向,为高性能水系锌离子电池的设计开发提供参考和借鉴。
中图分类号:
尹朝莛, 郭威, 王金鑫, 孟洋. 水系锌离子电池正极的改性策略及发展展望[J]. 储能科学与技术, 2025, 14(6): 2320-2335.
Zhaoting YIN, Wei GUO, Jinxin WANG, Yang MENG. Modification strategies and development prospects for positive electrodes for aqueous zinc-ion batteries[J]. Energy Storage Science and Technology, 2025, 14(6): 2320-2335.
表1
AZIBs不同正极材料与性能提升策略总结"
正极材料 | 性能提升策略 | 工作电压/V | 放电容量(mAh/g)/ 电流密度(A/g) | 循环性能(%)(电流密度(A/g), 次数) | 参考文献 |
---|---|---|---|---|---|
MnCO3@Mn3O4 | 构建异质结构 | 0.4~1.9 | 174 (0.1) | 77.32(1.0,1000) | [ |
VO-E | 构建异质结构 | 0.3~1.9 | 516 (0.5) | 85.5(20,5000) | [ |
MNO | 制造氧空位 | 0.4~1.9 | 283(0.3) | 92.5(3,1000) | [ |
δ-MnO2-2.0 | 调控氧空位 | 0.9~1.9 | 551.8(0.5) | 83(3,1500) | [ |
Od-NiCo2O4 | 制造氧空位 | 0~0.57 | 418.9(1.0) | 99.8(16,10000) | [ |
Mg-MnO2 | 阳离子掺杂 | 1.0~1.8 | 370 (0.6) | 87.07(0.6,300) | [ |
Cu-Bi2-xSe3 | 阳离子掺杂 | 0.2~1.6 | 288.5(0.2) | 46.6(10,4000) | [ |
VO-NH | 阳离子掺杂 | 0.2~1.6 | 396.1(0.5) | 80.2(10,10000) | [ |
NH4V3O8·0.5H2O | 水分子插层 | 0.4~1.3 | 399(0.2) | 82.7(0.2,120) | [ |
HATN-PNZ | 大π共轭平面增加疏水性 | 0.05~1.65 | 257(5.0) | 99.8(50,45000) | [ |
TABQ-PQ | 大π共轭平面增加疏水性 | 0.2~1.2 | 200(0.1) | 90.8(5.0,30000) | [ |
MnOF0.04 | 引入阴离子配位 | 0.9~1.8 | 241.9(0.2) | 76.2(5,3500) | [ |
MnO2@CeO2 | 材料复合 | 0.8~1.8 | 355(1.0) | 89.68(3,1000) | [ |
MnO@PC | 增强自发溶解活性 | 0.8~1.9 | 223(0.2) | 89(2.0,2000) | [ |
MNVO | 氧离子掺杂 | 0.3~1.6 | 368(0.5) | 90.2(10,5000) | [ |
PANI-M | 质子自掺杂 | 0.6~1.6 | 270(0.5) | 87(15,4000) | [ |
Cu2O-CDs | 构建异质结构 | 0.2~1.2 | 339(0.2) | 63(0.1,100) | [ |
ZnTe@C NWs | 构建异质结构 | 0.2~1.6 | 309(1.0) | 74(1,400) | [ |
AlMO | 阳离子掺杂 | 0.8~1.8 | 268.2(0.5) | 100(4,15000) | [ |
PVP-MnO2 | 有机分子插层 | 0.8~1.8 | 309(0.25) | 100(10,20000) | [ |
V6O13-x /rGO | 构建异质结构 | 0.2~1.6 | 376.8(0.5) | 92(5,3000) | [ |
NSVOHI | 水分子插层 | 0.4~1.6 | 426(0.5) | 91(1.3,200) | [ |
PEDOT-MnO2 | 有机分子插层 | 0.8~1.8 | 300(0.2) | 100(0.2,100) | [ |
PEDOT-MoO3 | 有机分子插层 | 0.2~1.4 | 270.5(5.0) | 77.6(30,500) | [ |
LPVO | 有机分子插层 | 0.2~1.4 | 303(0.5) | 94(5,800) | [ |
V-EG | 有机分子插层 | 0.2~1.8 | 516(0.5) | 81.1(20,10000) | [ |
EDA-VO | 有机分子插层 | 0.4~1.4 | 382.6(0.5) | 99.95(5,10000) | [ |
NMOH | 双分子共嵌入 | 0.8~1.9 | 389.8(0.2) | 100(0.5,400) | [ |
Li@MnVO | 双离子顺序插层 | 0.2~1.6 | 232(4.0) | 99(10,5000) | [ |
1 | 国家发展改革委 国家能源局关于加快推动新型储能发展的指导意见[EB/OL]. [2021-7-15]. https://zfxxgk.nea.gov.cn/2021-07/15/c_1310079331.htm. |
2 | XU Z M, ZHANG W Y, WANG X Z, et al. High-rate and long-life flexible aqueous rechargeable zinc-ion battery enabled by hierarchical core-shell heterostructures[J]. Journal of Materials Chemistry A, 2024, 12(4): 2172-2183. DOI: 10.1039/D3TA06183C. |
3 | WU X Y, JI X L. Aqueous batteries get energetic[J]. Nature Chemistry, 2019, 11(8): 680-681. DOI: 10.1038/s41557-019-030 0-3. |
4 | CHAO D L, ZHOU W H, XIE F X, et al. Roadmap for advanced aqueous batteries: From design of materials to applications[J]. Science Advances, 2020, 6(21): eaba4098. DOI: 10.1126/sciadv.aba4098. |
5 | DING L Y, WANG L, GAO J C, et al. Facile Zn2+ desolvation enabled by local coordination engineering for long-cycling aqueous zinc-ion batteries[J]. Advanced Functional Materials, 2023, 33(32): 2301648. DOI: 10.1002/adfm.202301648. |
6 | SHEN S C, MA D T, OUYANG K F, et al. An in situ electrochemical amorphization electrode enables high-power high-cryogenic capacity aqueous zinc-ion batteries[J]. Advanced Functional Materials, 2023, 33(38): 2304255. DOI: 10.1002/adfm. 202304255. |
7 | TANG B Y, SHAN L T, LIANG S Q, et al. Issues and opportunities facing aqueous zinc-ion batteries[J]. Energy & Environmental Science, 2019, 12(11): 3288-3304. DOI: 10.1039/C9EE02526J. |
8 | HU L F, WU Z Y, LU C J, et al. Principles of interlayer-spacing regulation of layered vanadium phosphates for superior zinc-ion batteries[J]. Energy & Environmental Science, 2021, 14(7): 4095-4106. DOI: 10.1039/D1EE01158H. |
9 | LI C W, LIU C, WANG Y, et al. Drastically-enlarged interlayer-spacing MoS2 nanocages by inserted carbon motifs as high performance cathodes for aqueous zinc-ion batteries[J]. Energy Storage Materials, 2022, 49: 144-152. DOI: 10.1016/j.ensm.202 2.03.048. |
10 | LI S W, LIU Y C, ZHAO X D, et al. Sandwich-like heterostructures of MoS2/graphene with enlarged interlayer spacing and enhanced hydrophilicity as high-performance cathodes for aqueous zinc-ion batteries[J]. Advanced Materials, 2021, 33(12): 2007480. DOI: 10.1002/adma.202007480. |
11 | SUN R, DONG S Y, GUO X C, et al. Construction of 2D sandwich-like Na2V6O16·3H2O@MXene heterostructure for advanced aqueous zinc ion batteries[J]. Journal of Colloid and Interface Science, 2024, 655: 226-233. DOI: 10.1016/j.jcis.20 23.11.020. |
12 | PU X M, SONG T B, TANG L B, et al. Rose-like vanadium disulfide coated by hydrophilic hydroxyvanadium oxide with improved electrochemical performance as cathode material for aqueous zinc-ion batteries[J]. Journal of Power Sources, 2019, 437: 226917. DOI: 10.1016/j.jpowsour.2019.226917. |
13 | ZHANG Q, ZHANG Y, FU L J, et al. A novel and improved hydrophilic vanadium oxide-based cathode for aqueous Zn-ion batteries[J]. Electrochimica Acta, 2020, 354: 136721. DOI: 10.1016/j.electacta.2020.136721. |
14 | ZHANG C, WU Z H, YANG C Q, et al. Rational regulation of optimal oxygen vacancy concentrations on VO2 for superior aqueous zinc-ion battery cathodes[J]. ACS Applied Materials & Interfaces, 2024, 16(31): 40903-40913. DOI: 10.1021/acsami.4c 05618. |
15 | ZHOU Y, WANG C, CHEN F R, et al. Scalable fabrication of NiCoMnO4 yolk-shell microspheres with gradient oxygen vacancies for high-performance aqueous zinc ion batteries[J]. Journal of Colloid and Interface Science, 2022, 626: 314-323. DOI: 10.1016/j.jcis.2022.06.152. |
16 | XU C J, LI B H, DU H D, et al. Energetic zinc ion chemistry: The rechargeable zinc ion battery[J]. Angewandte Chemie International Edition, 2012, 51(4): 933-935. DOI: 10.1002/anie.2 0106307. |
17 | KUNDU D, ADAMS B D, DUFFORT V, et al. A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode[J]. Nature Energy, 2016, 1: 16119. DOI: 10.1038/nenergy.2016.119. |
18 | ZHAO Q, HUANG W W, LUO Z Q, et al. High-capacity aqueous zinc batteries using sustainable quinone electrodes[J]. Science Advances, 2018, 4(3): eaao1761. DOI: 10.1126/sciadv.aao1761. |
19 | ZHONG C, LIU B, DING J, et al. Decoupling electrolytes towards stable and high-energy rechargeable aqueous zinc-manganese dioxide batteries[J]. Nature Energy, 2020, 5(6): 440-449. DOI: 10.1038/s41560-020-0584-y. |
20 | YUAN Y F, SHARPE R, HE K, et al. Understanding intercalation chemistry for sustainable aqueous zinc-manganese dioxide batteries[J]. Nature Sustainability, 2022, 5(10): 890-898. DOI: 10. 1038/s41893-022-00919-3. |
21 | LI Y Q, ZHENG X L, CARLSON E Z, et al. In situ formation of liquid crystal interphase in electrolytes with soft templating effects for aqueous dual-electrode-free batteries[J]. Nature Energy, 2024, 9(11): 1350-1359. DOI: 10.1038/s41560-024-01638-z. |
22 | DAI Y H, LU R H, ZHANG C Y, et al. Zn2+-mediated catalysis for fast-charging aqueous Zn-ion batteries[J]. Nature Catalysis, 2024, 7(7): 776-784. DOI: 10.1038/s41929-024-01169-6. |
23 | YANG W B, XIE X K, WU R, et al. Research status and prospects of cathode materials for aqueous zinc-ion batteries[J]. Journal of the China Coal Society, 2022, 47(9): 3351-3364. DOI: 10.13225/j.cnki.jccs.NE22.0411. |
24 | CHEN D, LU M J, CAI D, et al. Recent advances in energy storage mechanism of aqueous zinc-ion batteries[J]. Journal of Energy Chemistry, 2021, 54: 712-726. DOI: 10.1016/j.jechem.20 20.06.016. |
25 | SUN W, WANG F, HOU S, et al. Zn/MnO2 battery chemistry with H+ and Zn2+ coinsertion[J]. Journal of the American Chemical Society, 2017, 139(29): 9775-9778. DOI: 10.1021/jacs.7b04471. |
26 | CHAO D L, ZHOU W H, YE C, et al. An electrolytic Zn-MnO2 battery for high-voltage and scalable energy storage[J]. Angewandte Chemie International Edition, 2019, 58(23): 7823-7828. DOI: 10.1002/anie.201904174. |
27 | LI Y D, LI Y H, LIU Q S, et al. Revealing the dominance of the dissolution-deposition mechanism in aqueous Zn-MnO2 batteries[J]. Angewandte Chemie International Edition, 2024, 63(6): e202318444. DOI: 10.1002/anie.202318444. |
28 | YUAN C L, ZHANG Y, PAN Y, et al. Investigation of the intercalation of polyvalent cations (Mg2+, Zn2+) into λ-MnO2 for rechargeable aqueous battery[J]. Electrochimica Acta, 2014, 116: 404-412. DOI: 10.1016/j.electacta.2013.11.090. |
29 | ZHANG N, CHENG F Y, LIU J X, et al. Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities[J]. Nature Communications, 2017, 8: 405. DOI: 10.1038/s41467-017-00467-x. |
30 | LI S L, SHANG J, LI M L, et al. Design and synthesis of a π-conjugated N-heteroaromatic material for aqueous zinc-organic batteries with ultrahigh rate and extremely long life[J]. Advanced Materials, 2023, 35(50): 2207115. DOI: 10.1002/adma.2022 07115. |
31 | XIE M, WANG R, WANG N N, et al. MnO2@CeO2 composite cathode for aqueous zinc-ion batteries: Enhanced electrical conductivity and stability through Mn-O-Ce bonds[J]. Journal of Materials Chemistry A, 2023, 11(40): 21927-21936. DOI: 10.1039/D3TA04837C. |
32 | WANG Z H, SONG Y, WANG J, et al. Vanadium oxides with amorphous-crystalline heterointerface network for aqueous zinc-ion batteries[J]. Angewandte Chemie International Edition, 2023, 62(13): e202216290. DOI: 10.1002/anie.202216290. |
33 | FANG G Z, LIANG S Q, CHEN Z X, et al. Simultaneous cationic and anionic redox reactions mechanism enabling high-rate long-life aqueous zinc-ion battery[J]. Advanced Functional Materials, 2019, 29(44): 1905267. DOI: 10.1002/adfm.201905267. |
34 | WAN F, ZHANG Y, ZHANG L L, et al. Reversible oxygen redox chemistry in aqueous zinc-ion batteries[J]. Angewandte Chemie International Edition, 2019, 58(21): 7062-7067. DOI: 10.1002/an ie.201902679. |
35 | LV H, WANG J L, GAO X Y, et al. Electrochemical performance and mechanism of bimetallic organic framework for advanced aqueous Zn ion batteries[J]. ACS Applied Materials & Interfaces, 2023, 15(40): 47094-47102. DOI: 10.1021/acsami.3c10552. |
36 | JIA D D, SHEN Z L, LV Y H, et al. In situ electrochemical tuning of MIL-88B(V)@rGO into amorphous V2O5@rGO as cathode for high-performance aqueous zinc-ion battery[J]. Advanced Functional Materials, 2024, 34(2): 2308319. DOI: 10.1002/adfm.2 02308319. |
37 | LIU Y H, MA Y D, YANG W T, et al. Spontaneously dissolved MnO: A better cathode material for rechargeable aqueous zinc-manganese batteries[J]. Chemical Engineering Journal, 2023, 473: 145490. DOI: 10.1016/j.cej.2023.145490. |
38 | WANG X R, WANG Y L, NAVEED A, et al. Magnesium ion doping and micro-structural engineering assist NH4V4O10 as a high-performance aqueous zinc ion battery cathode[J]. Advanced Functional Materials, 2023, 33(48): 2306205. DOI: 10.1002/adfm. 202306205. |
39 | GUO J B, HE B, GONG W B, et al. Emerging amorphous to crystalline conversion chemistry in Ca-doped VO2 cathodes for high-capacity and long-term wearable aqueous zinc-ion batteries[J]. Advanced Materials, 2024, 36(11): 2303906. DOI: 10.1002/adma.202303906. |
40 | YIN C J, PAN C L, PAN Y S, et al. Proton self-doped polyaniline with high electrochemical activity for aqueous zinc-ion batteries[J]. Small Methods, 2023, 7(11): 2300574. DOI: 10.1002/smtd. 202300574. |
41 | ZHANG Q, LIU P G, WANG T, et al. Core-shell structures of Cu2O constructed by carbon quantum dots as high-performance zinc-ion battery cathodes[J]. Journal of Materials Chemistry A, 2023, 11(45): 24823-24835. DOI: 10.1039/D3TA05705D. |
42 | LI J W, ZHANG L, XIN W L, et al. Rationally designed ZnTe@C nanowires with superior zinc storage performance for aqueous Zn batteries[J]. Small, 2023, 19(52): 2304916. DOI: 10.1002/smll. 202304916. |
43 | YAN Z C, LI J W, LIU H G, et al. A reversible six-electron transfer cathode for advanced aqueous zinc batteries[J]. Angewandte Chemie International Edition, 2023, 62(47): e202312000. DOI: 10.1002/anie.202312000. |
44 | HUANG Q F, SHAO L Y, SHI X Y, et al. Na3V2O2(PO4)2F nanoparticles@reduced graphene oxide: A high-voltage polyanionic cathode with enhanced reaction kinetics for aqueous zinc-ion batteries[J]. Chemical Engineering Journal, 2023, 468: 143738. DOI: 10.1016/j.cej.2023.143738. |
45 | WANG K N, WANG J W, CHEN P M, et al. Structural transformation by crystal engineering endows aqueous zinc-ion batteries with ultra-long cyclability[J]. Small, 2023, 19(29): 23005 85. DOI: 10.1002/smll.202300585. |
46 | LIU Z X, QIN L P, CAO X X, et al. Ion migration and defect effect of electrode materials in multivalent-ion batteries[J]. Progress in Materials Science, 2022, 125: 100911. DOI: 10.1016/j.pmatsci. 2021.100911. |
47 | ZHANG A Q, ZHAO R, WANG Y H, et al. Hybrid superlattice-triggered selective proton grotthuss intercalation in δ-MnO2 for high-performance zinc-ion battery[J]. Angewandte Chemie, 2023, 135(51): e202313163. DOI: 10.1002/ange.202313163. |
48 | LI C, YUN X R, CHEN Y F, et al. Unravelling the proton hysteresis mechanism in vacancy modified vanadium oxides for High-Performance aqueous zinc ion battery[J]. Chemical Engineering Journal, 2023, 477: 146901. DOI: 10.1016/j.cej.20 23.146901. |
49 | GUO C C, ZHOU R Y, LIU X R, et al. Activating the MnS0.5Se0.5 microspheres as high-performance cathode materials for aqueous zinc-ion batteries: Insight into in situ electrooxidation behavior and energy storage mechanisms[J]. Small, 2024, 20(15): 2306237. DOI: 10.1002/smll.202306237. |
50 | GOU L, LI J R, LIANG K, et al. Bi-MOF modulating MnO2 deposition enables ultra-stable cathode-free aqueous zinc-ion batteries[J]. Small, 2023, 19(17): 2208233. DOI: 10.1002/smll.20 2208233. |
51 | XIA J J, ZHOU Y R, ZHANG J, et al. Triggering high capacity and superior reversibility of manganese oxides cathode via magnesium modulation for Zn// MnO2 batteries[J]. Small, 2023, 19(37): 2301906. DOI: 10.1002/smll.202301906. |
52 | SUN T J, ZHANG W J, ZHA Z T, et al. Designing a solubility-limited small organic molecule for aqueous zinc-organic batteries[J]. Energy Storage Materials, 2023, 59: 102778. DOI: 10.1016/j.ensm.2023.102778. |
53 | SUN Q Q, SUN T, DU J Y, et al. A sulfur heterocyclic quinone cathode towards high-rate and long-cycle aqueous Zn-organic batteries[J]. Advanced Materials, 2023, 35(22): 2301088. DOI: 10.1002/adma.202301088. |
54 | ZHENG C, HUANG Z H, SUN F F, et al. Oxygen-vacancy-reinforced vanadium oxide/graphene heterojunction for accelerated zinc storage with long life span[J]. Small, 2024, 20(6): 2306275. DOI: 10.1002/smll.202306275. |
55 | LI T, TONG J J, LIU S Y, et al. Butterfly-Tie like MnCO3@Mn3O4 heterostructure enhanced the electrochemical performances of aqueous zinc ion batteries[J]. Journal of Colloid and Interface Science, 2024, 656: 504-512. DOI: 10.1016/j.jcis.2023.11.129. |
56 | LI Y, LI X, DUAN H, et al. Aerogel-structured MnO2 cathode assembled by defect-rich ultrathin nanosheets for zinc-ion batteries[J]. Chemical Engineering Journal, 2022, 441: 136008. DOI: 10.1016/j.cej.2022.136008. |
57 | LI Y, YANG W, YANG W, et al. High-performance zinc-ion batteries enabled by electrochemically induced transformation of vanadium oxide cathodes[J]. Journal of Energy Chemistry, 2021, 60: 233-240. DOI: 10.1016/j.jechem.2021.01.025. |
58 | LIU Y, GUO S L, LING W, et al. In-situ oriented oxygen-defect-rich MnNO via nitridation and electrochemical oxidation based on industrial-scale Mn2O3 to achieve high-performance aqueous zinc ion battery[J]. Journal of Energy Chemistry, 2023, 76: 11-18. DOI: 10.1016/j.jechem.2022.08.038. |
59 | WANG Y W, ZHANG Y X, GAO G, et al. Effectively modulating oxygen vacancies in flower-like δ-MnO2 nanostructures for large capacity and high-rate zinc-ion storage[J]. Nano-Micro Letters, 2023, 15(1): 219. DOI: 10.1007/s40820-023-01194-3. |
60 | ZHANG Y, SUN D, WANG Y X, et al. Facile electrochemically induced vacancy modulation of NiCo2O4 cathode toward high-performance aqueous Zn-based battery[J]. Chemical Engineering Journal, 2023, 453: 139736. DOI: 10.1016/j.cej.2022.139736. |
61 | ZONG Y, CHEN H C, WANG J S, et al. Cation defect-engineered boost fast kinetics of two-dimensional topological Bi2Se3 cathode for high-performance aqueous Zn-ion batteries[J]. Advanced Materials, 2023, 35(51): 2306269. DOI: 10.1002/adma.20230 6269. |
62 | WU Z A, YAO J, CHEN C, et al. Ammonium intercalation engineering regulated structural stability of V6O13 cathodes for durable zinc ion batteries[J]. Chemical Engineering Journal, 2024, 479: 147889. DOI: 10.1016/j.cej.2023.147889. |
63 | YOO G, KOO B R, AN G. Nano-sized split V2O5 with H2O-intercalated interfaces as a stable cathode for zinc ion batteries without an aging process[J]. Chemical Engineering Journal, 2022, 434: 134738. DOI: 10.1016/j.cej.2022.134738. |
64 | JIANG H M, ZHANG Y F, PAN Z H, et al. NH4V3O8·0.5H2O nanobelts with intercalated water molecules as a high performance zinc ion battery cathode[J]. Materials Chemistry Frontiers, 2020, 4(5): 1434-1443. DOI: 10.1039/D0QM00051E. |
65 | CHENG X J, XIANG Z P, YANG C, et al. Polar organic molecules inserted in vanadium oxide with enhanced reaction kinetics for promoting aqueous zinc-ion storage[J]. Advanced Functional Materials, 2024, 34(9): 2311412. DOI: 10.1002/adfm.202311412. |
66 | MA X M, CAO X X, YAO M L, et al. Organic-inorganic hybrid cathode with dual energy-storage mechanism for ultrahigh-rate and ultralong-life aqueous zinc-ion batteries[J]. Advanced Materials, 2022, 34(6): 2105452. DOI: 10.1002/adma.202105452. |
67 | CHEN H, MA W B, GUO J D, et al. PEDOT-intercalated MnO2 layers as a high-performance cathode material for aqueous Zn-ion batteries[J]. Journal of Alloys and Compounds, 2023, 932: 167688. DOI: 10.1016/j.jallcom.2022.167688. |
68 | FANG Z T, LIU C, LI X G, et al. Systematic modification of MoO3-based cathode by the intercalation engineering for high-performance aqueous zinc-ion batteries[J]. Advanced Functional Materials, 2023, 33(7): 2210010. DOI: 10.1002/adfm.202210010. |
69 | HE W, FAN Z X, HUANG Z Q, et al. A Li+ and PANI co-intercalation strategy for hydrated V2O5 to enhance zinc ion storage performance[J]. Journal of Materials Chemistry A, 2022, 10(36): 18962-18971. DOI: 10.1039/D2TA03145K. |
70 | JIANG H M, ZHANG Y F, WAQAR M, et al. Anomalous Zn2+ storage behavior in dual-ion-In-sequence reconstructed vanadium oxides[J]. Advanced Functional Materials, 2023, 33(7): 2213127. DOI: 10.1 002/adfm.202213127. |
71 | ZHAI X Z, QU J, HAO S M, et al. Layered birnessite cathode with a displacement/intercalation mechanism for high-performance aqueous zinc-ion batteries[J]. Nano-Micro Letters, 2020, 12(1): 56. DOI: 10.1007/s40820-020-0397-3. |
[1] | 王浩天, 王永刚, 董晓丽. 基于有机电极材料的低温电池研究进展[J]. 储能科学与技术, 2024, 13(7): 2259-2269. |
[2] | 刘青宜. 钠离子电池的储能机制与性能提升策略[J]. 储能科学与技术, 2024, 13(6): 1871-1873. |
[3] | 詹世英, 李欢欢, 胡方. 水系锌离子电容器正极材料的研究进展[J]. 储能科学与技术, 2023, 12(9): 2799-2810. |
[4] | 段赞, 李玲芳, 柳鹏辉, 肖东方. MXenes系储能材料的先进制备手段与储能机制综述[J]. 储能科学与技术, 2022, 11(3): 982-990. |
[5] | 钟明, 闫伟, 王佳超, 王婧, 李灵宏. 炭基锂离子电容器负极预嵌锂技术研究进展[J]. 储能科学与技术, 2018, 7(4): 639-645. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||