[1] |
ROMAN D, SAXENA S, ROBU V, et al. Machine learning pipeline for battery state-of-health estimation[J]. Nature Machine Intelligence, 2021, 3(5): 447-456. DOI: 10.1038/s42256-021-00312-3.
|
[2] |
胡晓亚, 郭永芳, 张若可. 锂离子电池健康状态估计方法研究综述[J]. 电源学报, 2022, 20(1): 126-133. DOI: 10.13234/j.issn.2095-2805.2022.1.126.
|
|
HU X Y, GUO Y F, ZHANG R K. Review of state-of-health estimation methods for lithium-ion battery[J]. Journal of Power Supply, 2022, 20(1): 126-133. DOI: 10.13234/j.issn.2095-2805. 2022.1.126.
|
[3] |
王琛, 闵永军. 基于容量增量曲线与GWO-GPR的锂离子电池SOH估计[J]. 储能科学与技术, 2023, 12(11): 3508-3518. DOI: 10.19 799/j.cnki.2095-4239.2023.0458.
|
|
WANG C, MIN Y J. SOH estimation of lithium-ion batteries based on capacity increment curve and GWO-GPR[J]. Energy Storage Science and Technology, 2023, 12(11): 3508-3518. DOI: 10.197 99/j.cnki.2095-4239.2023.0458.
|
[4] |
LI J, ADEWUYI K, LOTFI N, et al. A single particle model with chemical/mechanical degradation physics for lithium ion battery State of Health (SOH) estimation[J]. Applied Energy, 2018, 212: 1178-1190. DOI: 10.1016/j.apenergy.2018.01.011.
|
[5] |
YANG J F, CAI Y F, PAN C F, et al. A novel resistor-inductor network-based equivalent circuit model of lithium-ion batteries under constant-voltage charging condition[J]. Applied Energy, 2019, 254: 113726. DOI: 10.1016/j.apenergy.2019.113726.
|
[6] |
BEZHA M, BEZHA K, NAGAOKA N. A Practical SoH Estimation using Adaptive ANN algorithm for the embedded EIS diagnosis in Industrial Applications[C]//2022 IEEE International Conference on Consumer Electronics, July 6-8, 2022, Taipei, China. IEEE, 2022: 571-572. DOI: 10.1109/ICCE-55306.2022.9869073.
|
[7] |
韦荣阳, 毛阗, 高晗, 等. 基于TWP-SVR的锂离子电池健康状态估计[J]. 储能科学与技术, 2022, 11(8): 2585-2599. DOI: 10.19799/j.cnki.2095-4239.2022.0184.
|
|
WEI R Y, MAO T, GAO H, et al. Health state estimation of lithium ion battery based on TWP-SVR[J]. Energy Storage Science and Technology, 2022, 11(8): 2585-2599. DOI: 10.19799/j.cnki.2095-4239.2022.0184.
|
[8] |
LYU Z Q, WANG G, GAO R J. Synchronous state of health estimation and remaining useful lifetime prediction of Li-ion battery through optimized relevance vector machine framework[J]. Energy, 2022, 251: 123852. DOI: 10.1016/j.energy.2022.123852.
|
[9] |
SPOTNITZ R. Simulation of capacity fade in lithium-ion batteries[J]. Journal of Power Sources, 2003, 113(1): 72-80. DOI: 10.1016/S0378-7753(02)00490-1.
|
[10] |
ZHAO L, WANG Y P, CHENG J H. A hybrid method for remaining useful life estimation of lithium-ion battery with regeneration phenomena[J]. Applied Sciences, 2019, 9(9): 1890. DOI: 10.3390/app9091890.
|
[11] |
YUAN Z F, TIAN T, HAO F C, et al. A hybrid neural network based on variational mode decomposition denoising for predicting state-of-health of lithium-ion batteries[J]. Journal of Power Sources, 2024, 609: 234697. DOI: 10.1016/j.jpowsour. 2024.234697.
|
[12] |
GAO K P, HUANG Z Y, LYU C T, et al. Multi-scale prediction of remaining useful life of lithium-ion batteries based on variational mode decomposition and integrated machine learning[J]. Journal of Energy Storage, 2024, 99: 113372. DOI: 10.1016/j.est.2024. 113372.
|
[13] |
ZHU M Y, OUYANG Q, WAN Y, et al. Remaining useful life prediction of lithium-ion batteries: A hybrid approach of grey-Markov chain model and improved Gaussian process[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 11(1): 143-153. DOI: 10.1109/JESTPE.2021.3098378.
|
[14] |
WEI M, YE M, ZHANG C W, et al. A multi-scale learning approach for remaining useful life prediction of lithium-ion batteries based on variational mode decomposition and Monte Carlo sampling[J]. Energy, 2023, 283: 129086. DOI: 10.1016/j.energy.2023.129086.
|
[15] |
胡天中, 余建波. 基于多尺度分解和深度学习的锂电池寿命预测[J]. 浙江大学学报(工学版), 2019, 53(10): 1852-1864. DOI: 10.3785/j.issn.1008-973X.2019.10.002.
|
|
HU T Z, YU J B. Life prediction of lithium-ion batteries based on multiscale decomposition and deep learning[J]. Journal of Zhejiang University (Engineering Science), 2019, 53(10): 1852-1864. DOI: 10.3785/j.issn.1008-973X.2019.10.002.
|
[16] |
PAN H H, LÜ Z Q, WANG H M, et al. Novel battery state-of-health online estimation method using multiple health indicators and an extreme learning machine[J]. Energy, 2018, 160: 466-477. DOI: 10.1016/j.energy.2018.06.220.
|
[17] |
谢旭, 蒲娴怡, 毕贵红, 等. 基于二层分解技术的锂离子电池容量评估方法[J]. 电源技术, 2022, 46(6): 647-651.
|
|
XIE X, PU X Y, BI G H, et al. Capacity estimation method of lithium-ion batteries based on two-layer decomposition technique[J]. Chinese Journal of Power Sources, 2022, 46(6): 647-651.
|
[18] |
LIN C P, XU J, SHI M J, et al. Constant current charging time based fast state-of-health estimation for lithium-ion batteries[J]. Energy, 2022, 247: 123556. DOI: 10.1016/j.energy.2022.123556.
|
[19] |
李嘉波, 王志璇, 田迪, 等. 变模态分解下SSA-LSTM组合的锂离子电池剩余使用寿命预测方法[J].储能科学与技术, 2025, 14 (2): 659-670. DOI: 10.19799/j.cnki.2095-4239.2024.0732.
|
|
LI J B, WANG Z X, TIAN D, et al. The remaining service life prediction method of lithium-ion batteries with SSA-LSTM combination under variable mode decomposition[J]. Energy Storage Science and Technology, 2025, 14 (2): 659-670. DOI: 10.19799/j.cnki.2095-4239.2024.0732.
|
[20] |
孙中麟, 李嘉波, 田迪, 等. 基于COA-LSTM和VMD的锂离子电池剩余寿命预测[J]. 储能科学与技术, 2024, 13(9): 3254-3265. DOI: 10.19799/j.cnki.2095-4239.2024.0157.
|
|
SUN Z L, LI J B, TIAN D, et al. Useful life prediction for lithium-ion batteries based on COA-LSTM and VMD[J]. Energy Storage Science and Technology, 2024, 13(9): 3254-3265. DOI: 10.19799/j.cnki.2095-4239.2024.0157.
|
[21] |
张岸, 杨春德. 基于GAN-CNN-LSTM的锂电池SOH估计[J]. 电源技术, 2021, 45(7): 902-906. DOI: 10.3969/j.issn.1002-087X.2021.07.019.
|
|
ZHANG A, YANG C D. SOH estimation of lithium batteries based on GAN-CNN-LSTM[J]. Chinese Journal of Power Sources, 2021, 45(7): 902-906. DOI: 10.3969/j.issn.1002-087X.2021.07.019.
|
[22] |
朱冰, 夏天. 多元宇宙优化估算锂离子电池的SOC与SOH[J]. 电池, 2024, 54(5): 688-692.DOI:10.19535/j.1001-1579.2024.05.017.
|
|
ZHU B, XIA T. Estimation of SOC and SOH for Li-ion battery by multi-verse optimization[J]. Dianchi(Battery Bimonthly), 2024, 54(5): 688-692. DOI:10.19535/j.1001-1579.2024.05.017.
|