储能科学与技术 ›› 2025, Vol. 14 ›› Issue (9): 3567-3580.doi: 10.19799/j.cnki.2095-4239.2025.0192
• 储能测试与评价 • 上一篇
收稿日期:
2025-02-26
修回日期:
2025-04-19
出版日期:
2025-09-28
发布日期:
2025-09-05
通讯作者:
封居强
E-mail:fjq5060912@126.com
作者简介:
封居强(1985—),男,副教授,研究方向为信号检测与故障,E-mail:fjq5060912@126.com。
基金资助:
Juqiang FENG1,2(), Chengzhi ZHANG1, Yuhang CHEN1
Received:
2025-02-26
Revised:
2025-04-19
Online:
2025-09-28
Published:
2025-09-05
Contact:
Juqiang FENG
E-mail:fjq5060912@126.com
摘要:
矿用锂离子电池在煤矿极端工况下面临严峻的安全性与可靠性挑战。虽然高精度物理建模是潜在解决方案,但传统实验方法存在成本高、风险大的局限性,而机理模型又难以适应实际复杂工况。为此,本研究提出一种基于数字孪生协同的模型构建框架。以228 Ah矿用锂离子电池为研究对象,利用改进一阶RC等效电路模型,建立了考虑温度、倍率、SOC和老化等多因素耦合的电池特性表征体系。基于Simulink/Simscape多物理场协同仿真平台,构建了融合电化学、热力学和状态估计算法的数字孪生系统,并集成了对流热传递、UKF和EKF估计算法模块,实现SOC和温度联合估计的对比分析。UKF估计的实验结果表明:在BBDST工况下,25 ℃、45 ℃和60 ℃恒温条件下SOC估计的最大允许误差(MPE)分别为0.3937%、0.4347%和0.5067%,温度估计的MPE分别为0.74 ℃、1 ℃和0.9613 ℃。在DST工况下,三个恒温条件下SOC估计的MPE分别为0.1829%、0.0034%和0.0035%,温度估计的MPE分别为0.6 ℃、0.9992 ℃和0.9740 ℃。结果验证了该模型具有优异的温度适应性和泛化能力。为下一代智能BMS开发提供了可靠的数字孪生验证平台,具有重要的理论价值和广阔的工程应用前景。
中图分类号:
封居强, 张成知, 陈雨杭. 基于数字孪生的高精度SOC和温度联合估计方法[J]. 储能科学与技术, 2025, 14(9): 3567-3580.
Juqiang FENG, Chengzhi ZHANG, Yuhang CHEN. A high-precision SOC and temperature joint estimation method based on rapid prototype modeling[J]. Energy Storage Science and Technology, 2025, 14(9): 3567-3580.
表1
BBDST工况SOC估计误差分析"
估计方法 | SOC范围 | 25 ℃ | 45 ℃ | 60 ℃ | |||
---|---|---|---|---|---|---|---|
RMSE/% | RMSE/% | RMSE/% | |||||
UKF | 1~0.95 | 0.0090 | -0.0162~-0.0090 | 0.0090 | -0.0091~0.0090 | 0.0090 | -0.0091~-0.009 |
0.95~0.05 | 0.0078 | -0.0246~0.0088 | 0.0078 | -0.0090~0.0058 | 0.0078 | -0.0090~0.0045 | |
0.05~0.01 | 0.1048 | -0.3937~0.0775 | 0.1823 | -0.4347~0.0316 | 0.2264 | -0.5067~0.0290 | |
EKF | 1~0.95 | 0.0128 | -0.0162~-0.0090 | 0.0098 | -0.0106~0.0090 | 0.0091 | -0.0091~-0.009 |
0.95~0.05 | 0.0101 | -0.0246~0.0127 | 0.0081 | -0.0241~0.0072 | 0.0880 | -0.2030~0.0042 | |
0.05~0.01 | 0.2145 | -0.3937~0.4091 | 0.3102 | -0.6726~0.4473 | 0.3519 | -0.7899~0.4664 |
[1] | 姚勇征, 王奕渊, 周福宝. 煤矿井下锂离子蓄电池热失控燃爆风险防控技术研究现状与挑战[J]. 煤炭学报, 2025, 50(4): 2158-2174. DOI: 10.13225/j.cnki.jccs.2024.0825. |
YAO Y Z, WANG Y Y, ZHOU F B. Research status & challenges on prevention and control technology for thermal runaway combustion-explosion of lithium-ion battery in coal mines[J]. Journal of China Coal Society, 2025, 50(4): 2158-2174. DOI: 10. 13225/j.cnki.jccs.2024.0825. | |
[2] | 张明军, 李睿鑫, 段维. 重载矿车用锂离子电池包随机振动可靠性研究[J]. 矿冶工程, 2023, 43(4): 178-181. DOI: 10.3969/j.issn.0253-6099.2023.04.038. |
ZHANG M J, LI R X, DUAN W. Reliability analysis for random vibration of lithium-ion battery packs in heavy-duty mining vehicles[J]. Mining and Metallurgical Engineering, 2023, 43(4): 178-181. DOI: 10.3969/j.issn.0253-6099.2023.04.038. | |
[3] | 曾骥, 曹铭, 黄菊花, 等. 电池管理系统硬件在环测试系统研究[J]. 电源技术, 2021, 45(5): 619-621, 634. |
ZENG J, CAO M, HUANG J H, et al. Research on hardware in loop system of BMS[J]. Chinese Journal of Power Sources, 2021, 45(5): 619-621, 634. | |
[4] | 龚循飞, 罗锋, 邓建明, 等. 基于AUTOSAR架构的新能源汽车控制器软件开发方法[J]. 汽车实用技术, 2023, 48(24): 5-9. DOI: 10. 16638/j.cnki.1671-7988.2023.024.002. |
GONG X F, LUO F, DENG J M, et al. A software development method for new energy vehicle controllers based on AUTOSAR architecture[J]. Automobile Applied Technology, 2023, 48(24): 5-9. DOI: 10.16638/j.cnki.1671-7988.2023.024.002. | |
[5] | LI W H, ZHANG H T, VAN VLIJMEN B, et al. Forecasting battery capacity and power degradation with multi-task learning[J]. Energy Storage Materials, 2022, 53: 453-466. DOI: 10.1016/j.ensm. 2022.09.013. |
[6] | LIU G C, ZHANG L J. Research on the thermal characteristics of an 18650 lithium-ion battery based on an electrochemical-thermal flow coupling model[J]. World Electric Vehicle Journal, 2021, 12(4): 250. DOI: 10.3390/wevj12040250. |
[7] | TAN Y X, LI Y, GU Y Q, et al. Numerical study on heat generation characteristics of charge and discharge cycle of the lithium-ion battery[J]. Energies, 2024, 17(1): 178. DOI: 10.3390/en17010178. |
[8] | TANG S, LIU Y, LI L X, et al. Electrochemical behavior simulation of high specific energy power lithium-ion batteries based on numerical model[J]. Ionics, 2020, 26(11): 5513-5523. DOI: 10. 1007/s11581-020-03706-2. |
[9] | PEREZ ESTEVEZ M A, CALLIGARO S, BOTTESI O, et al. An electro-thermal model and its electrical parameters estimation procedure in a lithium-ion battery cell[J]. Energy, 2021, 234: 121296. DOI: 10.1016/j.energy.2021.121296. |
[10] | UMAIR ALI M, HUSSAIN NENGROO S, KHAN M A, et al. A real-time Simulink interfaced fast-charging methodology of lithium-ion batteries under temperature feedback with fuzzy logic control[J]. Energies, 2018, 11(5): 1122. DOI: 10.3390/en11051122. |
[11] | KIM B R, NGUYEN T N, PARK C W. Cooling performance of thermal management system for lithium-ion batteries using two types of cold plate: Experiment and MATLAB/Simulink-Simscape simulation[J]. International Communications in Heat and Mass Transfer, 2023, 145: 106816. DOI: 10.1016/j.icheatmasstransfer. 2023.106816. |
[12] | PAN C F, JIA Z H, WANG J, et al. Optimization of liquid cooling heat dissipation control strategy for electric vehicle power batteries based on linear time-varying model predictive control[J]. Energy, 2023, 283: 129099. DOI: 10.1016/j.energy.2023.129099. |
[13] | PAN C F, JIA Z H, WANG J, et al. Optimization of liquid cooling heat dissipation control strategy for electric vehicle power batteries based on linear time-varying model predictive control[J]. Energy, 2023, 283: 129099. DOI: 10.1016/j.energy.2023.129099. |
[14] | 谭必蓉, 杜建华, 叶祥虎, 等. 基于模型的锂离子电池SOC估计方法综述[J]. 储能科学与技术, 2023, 12(6): 1995-2010. DOI: 10.19799/j.cnki.2095-4239.2023.0016. |
TAN B R, DU J H, YE X H, et al. Overview of SOC estimation methods for lithium-ion batteries based on model[J]. Energy Storage Science and Technology, 2023, 12(6): 1995-2010. DOI: 10.19799/j.cnki.2095-4239.2023.0016. | |
[15] | 付诗意, 吕桃林, 闵凡奇, 等. 电动汽车用锂离子电池SOC估算方法综述[J]. 储能科学与技术, 2021, 10(3): 1127-1136. DOI: 10.19799/j.cnki.2095-4239.2021.0013. |
FU S Y, LYU T L, MIN F Q, et al. Review of estimation methods on SOC of lithium-ion batteries in electric vehicles[J]. Energy Storage Science and Technology, 2021, 10(3): 1127-1136. DOI: 10.19799/j.cnki.2095-4239.2021.0013. | |
[16] | 申江卫, 周灿彪, 舒星, 等. 宽温度环境下基于改进电化学模型的锂电池荷电状态估计[J]. 储能科学与技术, 2023, 12(9): 2904-2916. DOI: 10.19799/j.cnki.2095-4239.2023.0342. |
SHEN J W, ZHOU C B, SHU X, et al. State of charge estimation for lithium batteries based on an improved electrochemical model at a wide temperature environment[J]. Energy Storage Science and Technology, 2023, 12(9): 2904-2916. DOI: 10.19799/j.cnki. 2095-4239.2023.0342. | |
[17] | 昝文达, 张睿, 丁飞. 锂离子电池电化学模型发展与应用[J]. 储能科学与技术, 2023, 12(7): 2302-2318. DOI: 10.19799/j.cnki.2095-4239. 2023.0296. |
ZAN W D, ZHANG R, DING F. Development and application of electrochemical models for lithium-ion batteries[J]. Energy Storage Science and Technology, 2023, 12(7): 2302-2318. DOI: 10.19799/j.cnki.2095-4239.2023.0296. | |
[18] | 刘晓悦, 魏宇册. 优化神经网络的锂电池SOC估算[J]. 机械设计与制造, 2021(11):83-86. DOI:10.3969/j.issn.1001-3997. 2021. 11.019. |
LIU X Y, WEI Y C. Optimization of neural network for lithium nattery SOC estimation[J]. Machinery Design & Manufacture, 2021(11):83-86. DOI:10.3969/j.issn.1001-3997.2021.11.019. | |
[19] | 张少凤, 张清勇, 杨叶森, 等. 基于滑动窗口和LSTM神经网络的锂离子电池建模方法[J]. 储能科学与技术, 2022, 11(1): 228-239. DOI: 10.19799/j.cnki.2095-4239.2021.0373. |
ZHANG S F, ZHANG Q Y, YANG Y S, et al. Lithium-ion battery model based on sliding window and long short term memory neural network[J]. Energy Storage Science and Technology, 2022, 11(1): 228-239. DOI: 10.19799/j.cnki.2095-4239. 2021. 0373. | |
[20] | 李清波, 张懋慧, 罗英, 等. 基于等效电路模型融合电化学原理的锂离子电池荷电状态估计[J]. 储能科学与技术, 2024, 13(9): 3072-3083. DOI: 10.19799/j.cnki.2095-4239.2024.0594. |
LI Q B, ZHANG M H, LUO Y, et al. Lithium-ion battery state of charge estimation based on equivalent circuit model[J]. Energy Storage Science and Technology, 2024, 13(9): 3072-3083. DOI: 10.19799/j.cnki.2095-4239.2024.0594. | |
[21] | 李建林, 肖珩. 锂离子电池建模现状综述[J]. 储能科学与技术, 2022, 11(2): 697-703. DOI: 10.19799/j.cnki.2095-4239.2021.0450. |
LI J L, XIAO H. Review on modeling of lithium-ion battery[J]. Energy Storage Science and Technology, 2022, 11(2): 697-703. DOI: 10.19799/j.cnki.2095-4239.2021.0450. | |
[22] | 陈晓辉, 周骏, 蒋超, 等. 基于高阶EKF的锂电池SOC测算精度研究[J]. 现代电子技术, 2024, 47(13): 129-137. DOI: 10.16652/j.issn. 1004-373x.2024.13.024. |
CHEN X H, ZHOU J, JIANG C, et al. Research on lithium battery SOC calculation accuracy based on high-order EKF[J]. Modern Electronics Technique, 2024, 47(13): 129-137. DOI: 10.16652/j.issn.1004-373x.2024.13.024. | |
[23] | 宋杨皖豪, 李昕. 宽度下锂离子电池分数阶建模及荷电状态估计[J/OL]. 重庆工商大学学报(自然科学版), 2024: 1-9. (2024-10-17). https://kns.cnki.net/kcms/detail/50.1155.N.20241017.0912.002.html. |
SONG Y, LI X. Fractional order modelling and charge state estimation of lithium-ion batteries over a wide temperature range[J/OL]. Journal of Chongqing Technology and Business University (Natural Science Edition), 2024: 1-9. (2024-10-17). https://kns.cnki.net/kcms/detail/50.1155.N.20241017.0912.002.html. | |
[24] | 韦仲爽, 侯巍, 赵彦, 等. 基于扩展卡尔曼滤波算法的磷酸铁锂电池荷电状态估计[J]. 中山大学学报(自然科学版) (中英文), 2023, 62(5): 92-100. DOI: 10.13471/j.cnki.acta.snus.2023b012. |
WEI Z S, HOU W, ZHAO Y, et al. State of charge estimation of lithium-iron batteries based on extended Kalman filter[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2023, 62(5): 92-100. DOI: 10.13471/j.cnki.acta.snus.2023b012. | |
[25] | 蒋帅, 陈铖, 段砚州, 等. 温度和老化影响下的锂离子电池荷电状态和健康状态联合估计方法研究[J]. 机械工程学报, 2024, 60(18): 266-275. |
JIANG S, CHEN C, DUAN Y Z, et al. Joint estimation of state-of-charge and state-of-health for lithium-ion batteries under the influence of temperature and aging[J]. Journal of Mechanical Engineering, 2024, 60(18): 266-275. | |
[26] | 郭宝贵, 马潇男. 基于分数阶模型的锂离子电池SOC估计[J]. 电池, 2024, 54(5): 634-639.DOI:10.19535/j.1001-1579.2024.05.006. |
GUO B G, MA X N. SOC estimation of Li-ion battery based on fractional order modeling[J]. Dianchi(Battery Bimonthly), 2024, 54(5): 634-639. DOI:10.19535/j.1001-1579.2024.05.006. | |
[27] | 胡明辉, 朱广曜, 刘长贺, 等. 考虑迟滞特性的卡尔曼滤波和门控循环单元神经网络的锂离子电池SOC联合估计[J]. 汽车工程, 2023, 45(9): 1688-1701. DOI: 10.19562/j.chinasae.qcgc.2023.09.017. |
HU M H, ZHU G Y, LIU C H, et al. Joint estimation of state of charge for lithium-ion battery with Kalman filtering and gated recurrent unit neural networks considering hysteresis characteristics[J]. Automotive Engineering, 2023, 45(9): 1688-1701. DOI: 10.19562/j.chinasae.qcgc.2023.09.017. | |
[28] | 樊金保, 李娜, 吴宜琨, 等. 能源电池单体层级数字孪生技术[J]. 储能科学与技术, 2024, 13(9): 3112-3133. DOI: 10.19799/j.cnki.2095-4239.2024.0596. |
FAN J B, LI N, WU Y K, et al. Digital twin technology for energy batteries at the cell level[J]. Energy Storage Science and Technology, 2024, 13(9): 3112-3133. DOI: 10.19799/j.cnki.2095-4239.2024.0596. | |
[29] | 张宇鑫, 武建华, 郑林锋, 等. 基于数字孪生的锂离子电池管理系统设计分析[J]. 电气工程学报, 2022, 17(4): 103-112. DOI: 10.11985/2022.04.011. |
ZHANG Y X, WU J H, ZHENG L F, et al. Design and analysis of lithium-ion battery management system based on digital twin[J]. Journal of Electrical Engineering, 2022, 17(4): 103-112. DOI: 10.11985/2022.04.011. | |
[30] | FENG J Q, CAI F, WU L, et al. State of charge estimation for lithium-ion battery pack based on real vehicle data and optimized backpropagation method by adaptive cross mutation sparrow search algorithm[J]. Energy Science & Engineering, 2024, 12(3): 896-912. DOI: 10.1002/ese3.1656. |
[31] | YAO B, CAI Y X, LIU W, et al. State-of-charge estimation for lithium-ion batteries based on modified unscented Kalman filter using improved parameter identification[J]. International Journal of Electrochemical Science, 2024, 19(5): 100574. DOI: 10.1016/j.ijoes.2024.100574. |
[32] | BILANSKY J, LACKO M, PASTOR M, et al. Improved digital twin of Li-ion battery based on generic MATLAB model[J]. Energies, 2023, 16(3): 1194. DOI: 10.3390/en16031194. |
[33] | 国家矿山安全监察局. 矿用防爆锂离子蓄电池电源安全技术要求: MT/T 1200—2023[S]. 北京: 2023. |
[1] | 樊金保, 李娜, 吴宜琨, 贺春旺, 杨乐, 宋维力, 陈浩森. 能源电池单体层级数字孪生技术[J]. 储能科学与技术, 2024, 13(9): 3112-3133. |
[2] | 周宇昊, 徐椤赟, 张钟平, 刘灵冲, 南斌, 赵海祺. 基于数字孪生的锂电池热电耦合模型构建与仿真分析[J]. 储能科学与技术, 2023, 12(2): 536-543. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||