储能科学与技术 ›› 2025, Vol. 14 ›› Issue (9): 3581-3595.doi: 10.19799/j.cnki.2095-4239.2025.0149
• 储能测试与评价 • 上一篇
谢红伟(), 时玮, 陈诗荣, 施洪生(
), 李华伟, 焦学文
收稿日期:
2025-02-17
修回日期:
2025-03-02
出版日期:
2025-09-28
发布日期:
2025-09-05
通讯作者:
施洪生
E-mail:23126375@bjtu.edu.cn;hshshi@bjtu.edu.cn
作者简介:
谢红伟(1999—),男,硕士研究生,研究方向为退役电池梯次利用筛分,Email:23126375@bjtu.edu.cn;
Hongwei XIE(), Wei SHI, Shirong CHEN, Hongsheng SHI(
), Huawei LI, Xuewen JIAO
Received:
2025-02-17
Revised:
2025-03-02
Online:
2025-09-28
Published:
2025-09-05
Contact:
Hongsheng SHI
E-mail:23126375@bjtu.edu.cn;hshshi@bjtu.edu.cn
摘要:
动力电池在老化过程中出现容量衰减、内阻增大和一致性下降等一系列特征变化,虽然这些特征变化给退役电池梯次利用安全性带来巨大挑战,但也成为电池状态评估和筛选的重要依据。首先,分析国内外政策法规在推动和规范梯次利用发展中的作用,并结合工程实例剖析安全隐患,提出特征指标提取与处理方法在效率和精度方面的要求。其次,围绕“模型-测试-算法”框架,创新性地将特征指标提取与处理分为“侧重于效率”和“侧重于精度”两大类方法,探讨在特征指标提取和处理过程中,测试手段和智能算法如何提高效率;介绍多维特征指标提取和分阶段的特征指标应用的过程中,模型与算法如何提高精度。最后,结合政策文献要求,对各类方法进行总结和对比,为迎接2030年即将来临的“退役电池浪潮”提供理论依据。
中图分类号:
谢红伟, 时玮, 陈诗荣, 施洪生, 李华伟, 焦学文. 退役电池特征指标提取和处理方法综述[J]. 储能科学与技术, 2025, 14(9): 3581-3595.
Hongwei XIE, Wei SHI, Shirong CHEN, Hongsheng SHI, Huawei LI, Xuewen JIAO. A Review of feature extraction and processing methods for retired batteries[J]. Energy Storage Science and Technology, 2025, 14(9): 3581-3595.
表1
国内外梯次利用工程实例"
实施国家及主体 | 时间 | 应用领域 | 成果与规模 |
---|---|---|---|
中国中国铁塔 | 2015年 | 通信基站 | 使用梯次利用的动力电池在30个不同省份建成约50万个基站,使用退役电池储能容量约3 GWh |
意大利Enel X | 2020年 | 工业储能 | Enel X公司与日产合作,在梅利利亚开展梯次利用项目,最大储能容量达1.7 MWh |
德国博世集团、宝马 | 2021年 | 工业储能 | 博世集团、宝马和瓦滕福公司利用退役电池,建造了2 MW/2 MWh的大型光伏电站储能系统 |
国网江苏电力 | 2022年 | 电网储能 | 利用退役电池建设南京江北储能电站,这是国内首个梯次利用的电网侧储能电站,总容量达7.5万 kWh,其中退役磷酸铁锂电池约为4万 kWh |
国网鄂州市鄂城区供电公司 | 2024年 | 直流微电网 | 将光伏发电、退役电池和充电桩组成直流微电网系统,其中电池储能量可达384 kWh |
表2
退役电池检测精度与效率要求分类与依据"
维度 | 具体要求 | 技术指标 | 法规/标准依据 | 核心技术要求 |
---|---|---|---|---|
精度维度要求 | 核心参数检测精度控制 | 容量衰减率误差±1.5%内阻离散度≤0.8 mΩ | GB/T 42231—2022 | 0.5级精度电化学工作站全温域热电校准系统 |
全周期数据追溯精度 | 特征参数采样频≥10 Hz 数据完整度≥99.8% | 欧盟电池法规(2023) | 128位高速AD转换器分布式时间戳同步机制 | |
空间分辨能力 | 热特性参数分辨率≤5 mm3 膨胀力梯度检测精度0.1 N/mm2 | IEC 63338:2024 | 激光干涉测量系统 多物理场耦合误差补偿算法 | |
效率维度要求 | 单体检测时效性 | 特征提取时间≤120 s/cell 重组合格率≥95% | 梯次利用管理办法 | 多线程并行计算架构 机器视觉引导定位技术 |
批量处理能力 | 产线吞吐量≥2000 只/h 数据处理延迟≤50 ms | UL 1974 | 六轴机器人分拣系统5G-MEC边缘计算平台 | |
算法计算效率 | 寿命预测时效提升40% 误判率压缩至≤0.5% | T/CESA 1063—2022 | LightGBM-MOGA混合算法 张量压缩感知技术 |
表4
基于测试曲线的特征指标提取方法汇总"
曲线类型 | 参考文献 | 特征指标 | 特点 |
---|---|---|---|
EIS曲线 | 文献[ | 阻抗 | 只提取EIS低频部分 |
文献[ | 利用外部设备实现离线快速测量 | ||
文献[ | 只提取阻抗谱中低频部分 | ||
文献[ | 不同阻抗类型分别提取 | ||
文献[ | 同时测量多块电池 | ||
文献[ | 不同SOC下曲线重构至同一SOC测量 | ||
充放电曲线 | 文献[ | 任意片段间隔点连线与到该垂线的距离参数 | 提取更加直观的几何特征 |
文献[ | 电压-容量衰减方差特征 | 只需通过任意片段的20个点提取特征 | |
文献[ | 电压 | 可通过曲线平移提取未测试电池的指标 | |
文献[ 文献[ | 电压 | 部分曲线特征指标预测全体 | |
文献[ 文献[ | 电压 | 将电压指标进行可视化处理 | |
脉冲电压曲线 | 文献[ 文献[ | 电压 | 利用短时脉冲进行特征快速提取 |
文献[ | 电压曲线拐点 | 少量指标结合机器学习进行预测 | |
微分曲线 | 文献[ 文献[ | 电压区间 | 提取出特征指标的最优片段 |
文献[ 文献[ | 容量、内阻 | 能够高倍率充放电,提高效率 | |
文献[ 文献[ | 电压、内阻 | 微分曲线结合其他测试方法 |
[1] | ZHAO W Z, ZHOU X C, WANG C Y, et al. Energy analysis and optimization design of vehicle electro-hydraulic compound steering system[J]. Applied Energy, 2019, 255: 113713. DOI: 10. 1016/j.apenergy.2019.113713. |
[2] | 国家市场监督管理总局、中国国家标准化管理委员. 会GB/T 34015.3—2021«车用动力电池回收利用 梯次利用 第3部分:梯次利用要求»[S]. 2022. |
[3] | 孟国栋, 李雨珮, 唐佳, 等. 锂离子电池储能电站的热失控状态检测与安全防控技术研究进展[J]. 高电压技术, 2024, 50(7): 3105-3127. DOI: 10.13336/j.1003-6520.hve.20232357. |
MENG G D, LI Y P, TANG J, et al. Research progress of thermal runaway detection and safety control technology for lithium-ion battery energy storage power stations[J]. High Voltage Engineering, 2024, 50(7): 3105-3127. DOI: 10.13336/j.1003-6520.hve.20232357. | |
[4] | 豆咏琪, 宋小龙, 庄绪宁, 等. 退役磷酸铁锂电池梯次利用生命周期评价与碳减排情景分析[J]. 中国环境科学, 2024, 44(7): 4091-4100. DOI: 10.19674/j.cnki.issn1000-6923.20240409.002. |
DOU Y Q, SONG X L, ZHUANG X N, et al. Life cycle assessment and carbon reduction scenario analysis of retired lithium iron phosphate batteries for cascade utilization[J]. China Environmental Science, 2024, 44(7): 4091-4100. DOI: 10.19674/j.cnki.issn1000-6923.20240409.002. | |
[5] | HUA Y, ZHOU S D, HUANG Y, et al. Sustainable value chain of retired lithium-ion batteries for electric vehicles[J]. Journal of Power Sources, 2020, 478: 228753. DOI: 10.1016/j.jpowsour. 2020.228753. |
[6] | SHAHJALAL M, ROY P K, SHAMS T, et al. A review on second-life of Li-ion batteries: Prospects, challenges, and issues[J]. Energy, 2022, 241: 122881. DOI: 10.1016/j.energy.2021.122881. |
[7] | S V, CHE H S, SELVARAJ J, et al. State of Health (SoH) estimation methods for second life lithium-ion battery—Review and challenges[J]. Applied Energy, 2024, 369: 123542. DOI: 10.1016/j.apenergy.2024.123542. |
[8] | 李建林, 李雅欣, 吕超, 等. 碳中和目标下退役电池筛选聚类关键技术研究[J]. 电网技术, 2022, 46(2): 429-441. DOI: 10.13335/j.1000-3673.pst.2021.0655. |
LI J L, LI Y X, LÜ C, et al. Key technology of retired batteries' screening and clustering under target of carbon neutrality[J]. Power System Technology, 2022, 46(2): 429-441. DOI: 10.13335/j.1000-3673.pst.2021.0655. | |
[9] | HUA Y, LIU X H, ZHOU S D, et al. Toward sustainable reuse of retired lithium-ion batteries from electric vehicles[J]. Resources, Conservation and Recycling, 2021, 168: 105249. DOI: 10.1016/j.resconrec.2020.105249. |
[10] | 马速良, 李建林, 李雅欣, 等. 面向电池梯次利用筛选需求的定制化聚类优化方法[J]. 中国电机工程学报, 2022, 42(17): 6208-6220. DOI: 10.13334/j.0258-8013.pcsee.211618. |
MA S L, LI J L, LI Y X, et al. Customized clustering optimization method for battery reutilization screening requirements[J]. Proceedings of the CSEE, 2022, 42(17): 6208-6220. DOI: 10. 13334/j.0258-8013.pcsee.211618. | |
[11] | YANG Y, OKONKWO E G, HUANG G Y, et al. On the sustainability of lithium ion battery industry—A review and perspective[J]. Energy Storage Materials, 2021, 36: 186-212. DOI: 10.1016/j.ensm.2020.12.019. |
[12] | 刘秋华, 王明康, 杨圣城. 基于全寿命周期内经济收益最大化的退役电池储能容量配置方法研究[J]. 太阳能学报, 2024, 45(7): 143-152. DOI: 10.19912/j.0254-0096.tynxb.2023-0457. |
LIU Q H, WANG M K, YANG S C. Research on configuration method of energy storage capacity for retired batteries based on maximizing economic benefits throughout life cycle[J]. Acta Energiae Solaris Sinica, 2024, 45(7): 143-152. DOI: 10.19912/j.0254-0096.tynxb.2023-0457. | |
[13] | 李晋, 王青松, 孔得朋, 等. 锂离子电池储能安全评价研究进展[J]. 储能科学与技术, 2023, 12(7): 2282-2301. DOI: 10.19799/j.cnki. 2095-4239.2023.0252. |
LI J, WANG Q S, KONG D P, et al. Research progress on the safety assessment of lithium-ion battery energy storage[J]. Energy Storage Science and Technology, 2023, 12(7): 2282-2301. DOI: 10.19799/j.cnki.2095-4239.2023.0252. | |
[14] | WU C L, SONG J X, HUANG X R, et al. A discharging internal resistance dynamic model of lithium-ion batteries based on multiple influencing factors[J]. Journal of Central South University, 2024, 31(2): 670-678. DOI: 10.1007/s11771-024-5574-y. |
[15] | KIM S, CHOI J I. Bayesian impedance deconvolution using timescale distribution for lithium-ion battery state estimation[J]. Journal of Energy Storage, 2024, 100: 113503. DOI: 10.1016/j.est.2024.113503. |
[16] | 李超凡, 杨林. 基于电化学阻抗谱的锂离子电池荷电状态估计[J]. 电源技术, 2024, 48(12): 2404-2409. |
LI C F, YANG L. State of charge evaluation for lithium-ion battery via electrochemical impedance spectroscopy[J]. Chinese Journal of Power Sources, 2024, 48(12): 2404-2409. | |
[17] | 程娅伊, 于方丽, 李鑫, 等. 多孔碳支撑SnO2/CoO/异质结的构筑及其储锂性能研究[J]. 电源技术, 2024, 48(7): 1170-1178. |
CHENG Y Y, YU F L, LI X, et al. Construction of porous carbon supported SnO2/CoO/heterostructures and its lithium storage performance[J]. Chinese Journal of Power Sources, 2024, 48(7): 1170-1178. | |
[18] | 孙丙香, 苏晓佳, 马仕昌, 等. 基于低频阻抗谱和健康特征融合的锂离子电池健康状态主动探测方法研究[J]. 电力系统保护与控制, 2022, 50(7): 23-30. DOI: 10.19783/j.cnki.pspc.226001. |
SUN B X, SU X J, MA S C, et al. An active detection method of li-ion battery health state based on low-frequency EIS and health feature fusion[J]. Power System Protection and Control, 2022, 50(7): 23-30. DOI: 10.19783/j.cnki.pspc.226001. | |
[19] | 杨浩, 张闯, 刘素贞, 等. 锂离子电池阻抗在线测量装置设计[J]. 电工电能新技术, 2024, 43(1): 61-71. |
YANG H, ZHANG C, LIU S Z, et al. Design of lithium-ion battery impedance on-line measuring device[J]. Advanced Technology of Electrical Engineering and Energy, 2024, 43(1): 61-71. | |
[20] | 孙丙香, 庞俊峰, 苏晓佳, 等. 基于中低频阻抗谱的锂离子电池容量快速估计方法[J]. 中国公路学报, 2024, 37(2): 293-303. DOI: 10. 19721/j.cnki.1001-7372.2024.02.022. |
SUN B X, PANG J F, SU X J, et al. A rapid capacity estimation method for lithium-ion batteries based on medium-low frequency electrochemical impedance spectroscopy[J]. China Journal of Highway and Transport, 2024, 37(2): 293-303. DOI: 10.19721/j.cnki.1001-7372.2024.02.022. | |
[21] | 来鑫, 陈权威, 邓聪, 等. 一种基于电化学阻抗谱的大规模退役锂离子电池的软聚类方法[J]. 电工技术学报, 2022, 37(23): 6054-6064. DOI: 10.19595/j.cnki.1000-6753.tces.211343. |
LAI X, CHEN Q W, DENG C, et al. A soft clustering method for the large-scale retired lithium-ion batteries based on electrochemical impedance spectroscopy[J]. Transactions of China Electrotechnical Society, 2022, 37(23): 6054-6064. DOI: 10.19595/j.cnki.1000-6753.tces.211343. | |
[22] | SHERAZ M, CHOI W. A high-speed multichannel electrochemical impedance spectroscopy system using broadband multi-sine binary perturbation for retired Li-ion batteries of electric vehicles[J]. Energies, 2024, 17(12): 2979. DOI: 10.3390/en17122979. |
[23] | 来鑫, 马云杰, 郑岳久, 等. 一种基于几何特征变换与迁移的锂离子电池电化学阻抗谱曲线重构方法[J]. 机械工程学报, 2023, 59(22): 140-149. DOI: 10.3901/JME.2023.22.140. |
LAI X, MA Y J, ZHENG Y J, et al. Reconstruction method of electrochemical impedance spectrum curve of lithium-ion batteries based on geometric feature transformation and migration[J]. Journal of Mechanical Engineering, 2023, 59(22): 140-149. DOI: 10.3901/JME.2023.22.140. | |
[24] | 刘健, 陈自强, 黄德扬, 等. 基于等压差充电时间的锂离子电池寿命预测[J]. 上海交通大学学报, 2019, 53(9): 1058-1065. DOI: 10. 16183/j.cnki.jsjtu.2019.09.007. |
LIU J, CHEN Z Q, HUANG D Y, et al. Remaining useful life prediction for lithium-ion batteries based on time interval of equal charging voltage difference[J]. Journal of Shanghai Jiao Tong University, 2019, 53(9): 1058-1065. DOI: 10.16183/j.cnki.jsjtu. 2019.09.007. | |
[25] | 段双明, 王恩吉, 朱微, 等. 基于锂电池电压片段的退役电池快速筛选重组[J]. 电网技术, 2024, 48(10): 4264-4274. DOI: 10.13335/j.1000-3673.pst.2023.0242. |
DUAN S M, WANG E J, ZHU W, et al. Rapid screening and recombing of retired batteries based on voltage segments of lithiumion baterries[J]. Power System Technology, 2024, 48(10): 4264-4274. DOI: 10.13335/j.1000-3673.pst.2023.0242. | |
[26] | ZHANG Y Z, ZHAO M Y. Cloud-based in situ battery life prediction and classification using machine learning[J]. Energy Storage Materials, 2023, 57: 346-359. DOI: 10.1016/j.ensm. 2023.02.035. |
[27] | LAI X, QIAO D D, ZHENG Y J, et al. A rapid screening and regrouping approach based on neural networks for large-scale retired lithium-ion cells in second-use applications[J]. Journal of Cleaner Production, 2019, 213: 776-791. DOI: 10.1016/j.jclepro. 2018.12.210. |
[28] | 郑岳久, 李家琦, 朱志伟, 等. 基于快速充电曲线的退役锂电池模块快速分选技术[J]. 电网技术, 2020, 44(5): 1664-1673. DOI: 10.13335/j.1000-3673.pst.2020.0121. |
ZHENG Y J, LI J Q, ZHU Z W, et al. Rapid classification based on fast charging curves for reuse of retired lithium-ion battery modules[J]. Power System Technology, 2020, 44(5): 1664-1673. DOI: 10.13335/j.1000-3673.pst.2020.0121. | |
[29] | TENG J H, CHEN R J, LEE P T, et al. Accurate and efficient SOH estimation for retired batteries[J]. Energies, 2023, 16(3): 1240. DOI: 10.3390/en16031240. |
[30] | LI X Z, ZHANG L Z, LIU Y, et al. A fast classification method of retired electric vehicle battery modules and their energy storage application in photovoltaic generation[J]. International Journal of Energy Research, 2020, 44(3): 2337-2344. DOI: 10.1002/er.5083. |
[31] | NI Y L, XU J N, ZHU C B, et al. Rapid estimation of residual capacity for retired LiFePO4 batteries using voltage interval at low state of charge[J]. Energy Storage Materials, 2023, 55: 463-478. DOI: 10.1016/j.ensm.2022.12.005. |
[32] | GU X, LI J L, ZHU Y H, et al. A quick and intelligent screening method for large-scale retired batteries based on cloud-edge collaborative architecture[J]. Energy, 2023, 285: 129342. DOI: 10.1016/j.energy.2023.129342. |
[33] | LIN M Q, WU J, ZOU J Q, et al. Retired battery screening based on Markov transition field and swin transformer[J]. IEEE Transactions on Transportation Electrification, 2023, 10(2): 4217-4227. DOI: 10.1109/TTE.2023.3306393. |
[34] | LIN M Q, WU J, MENG J H, et al. Screening of retired batteries with gramian angular difference fields and ConvNeXt[J]. Engineering Applications of Artificial Intelligence, 2023, 123: 106397. DOI: 10.1016/j.engappai.2023.106397. |
[35] | 李金东, 古月圆, 王路阳, 等. 退役锂离子电池健康状态评估方法综述[J]. 储能科学与技术, 2019, 8(5): 807-812. DOI: 10.12028/j.issn.2095-4239.2019.0041. |
LI J D, GU Y Y, WANG L Y, et al. Review on state of health estimation of retired lithium-ion batteries[J]. Energy Storage Science and Technology, 2019, 8(5): 807-812. DOI: 10.12028/j.issn.2095-4239.2019.0041. | |
[36] | 骆凡, 黄海宏, 王海欣. 基于短时脉冲放电与电化学阻抗谱的退役动力电池快速分选与重组方法[J]. 仪器仪表学报, 2022, 43(1): 229-238. DOI: 10.19650/j.cnki.cjsi.J2108665. |
LUO F, HUANG H H, WANG H X. A fast screening and recombinant method based on short-time pulse discharge and electrochemical impedance spectroscopy for decommissioned power batteries[J]. Chinese Journal of Scientific Instrument, 2022, 43(1): 229-238. DOI: 10.19650/j.cnki.cjsi.J2108665. | |
[37] | 张朝龙, 赵筛筛, 章博. 基于因子分析与K-means聚类的退役动力电池快速分选方法[J]. 电力系统保护与控制, 2021, 49(12): 41-47. DOI: 10.19783/j.cnki.pspc.201413. |
ZHANG C L, ZHAO S S, ZHANG B. A fast classification method based on factor analysis and K-means clustering for retired electric vehicle batteries[J]. Power System Protection and Control, 2021, 49(12): 41-47. DOI: 10.19783/j.cnki.pspc.201413. | |
[38] | 汪宇航, 黄海宏, 王海欣. 基于脉冲电压频域特征和内阻的退役电池快速初步分选策略[J]. 仪器仪表学报, 2024, 45(3): 214-226. DOI: 10.19650/j.cnki.cjsi.J2312076. |
WANG Y H, HUANG H H, WANG H X. Fast preliminary sorting strategy for retired batteries based on pulse voltage frequency domain features and internal resistance[J]. Chinese Journal of Scientific Instrument, 2024, 45(3): 214-226. DOI: 10.19650/j.cnki.cjsi.J2312076. | |
[39] | TAO S Y, MA R F, CHEN Y O, et al. Rapid and sustainable battery health diagnosis for recycling pretreatment using fast pulse test and random forest machine learning[J]. Journal of Power Sources, 2024, 597: 234156. DOI: 10.1016/j.jpowsour. 2024.234156. |
[40] | 王睿茜, 周星, 王羽, 等. 基于微分曲线的锂离子电池老化诊断研究综述[J]. 中国电机工程学报, 2024, 44(22): 8920-8936. DOI: 10. 13334/j.0258-8013.pcsee.231026. |
WANG R X, ZHOU X, WANG Y, et al. A review of degradation diagnosis of lithium-ion batteries based on differential curves[J]. Proceedings of the CSEE, 2024, 44(22): 8920-8936. DOI: 10. 13334/j.0258-8013.pcsee.231026. | |
[41] | ZHANG Q C, LI X Z, DU Z C, et al. Aging performance characterization and state-of-health assessment of retired lithium-ion battery modules[J]. Journal of Energy Storage, 2021, 40: 102743. DOI: 10.1016/j.est.2021.102743. |
[42] | ZHANG S Z, ZHAI B Y, GUO X, et al. Synchronous estimation of state of health and remaining useful lifetime for lithium-ion battery using the incremental capacity and artificial neural networks[J]. Journal of Energy Storage, 2019, 26: 100951. DOI: 10.1016/j.est. 2019.100951. |
[43] | SUN H Q, WEN X K, LIU W, et al. State-of-health estimation of retired lithium-ion battery module aged at 1C-rate[J]. Journal of Energy Storage, 2022, 50: 104618. DOI: 10.1016/j.est.2022. 104618. |
[44] | ZHOU Z K, DUAN B, KANG Y Z, et al. An efficient screening method for retired lithium-ion batteries based on support vector machine[J]. Journal of Cleaner Production, 2020, 267: 121882. DOI: 10.1016/j.jclepro.2020.121882. |
[45] | 黄健, 李建林, 李征. 退役锂离子电池健康状态快速评估方法[J]. 电力系统保护与控制, 2021, 49(12): 25-32. DOI: 10.19783/j.cnki.pspc.210244. |
HUANG J, LI J L, LI Z. A state of health rapid assessment method for decommissioned lithium-ion batteries[J]. Power System Protection and Control, 2021, 49(12): 25-32. DOI: 10. 19783/j.cnki.pspc.210244. | |
[46] | WANG Y C, CHEN K C. Classification of aged batteries based on capacity and/or resistance through machine learning models with aging features as input: A comparative study[J]. Journal of Cleaner Production, 2024, 471: 143431. DOI: 10.1016/j.jclepro. 2024.143431. |
[47] | AHMEID M, MUHAMMAD M, LAMBERT S, et al. A rapid capacity evaluation of retired electric vehicle battery modules using partial discharge test[J]. Journal of Energy Storage, 2022, 50: 104562. DOI: 10.1016/j.est.2022.104562. |
[48] | TIAN Z, WEI Z, WANG J H, et al. Research progress on aging prediction methods for fuel cells: Mechanism, methods, and evaluation criteria[J]. Energies, 2023, 16(23): 7750. DOI: 10.3390/en16237750. |
[49] | ZHANG Y, ZHOU Z K, KANG Y Z, et al. A quick screening approach based on fuzzy C-means algorithm for the second usage of retired lithium-ion batteries[J]. IEEE Transactions on Transportation Electrification, 2021, 7(2): 474-484. DOI: 10.1109/TTE.2020.3032289. |
[50] | ZHANG Y, ZHOU Z K, YANG X C, et al. A novel screening approach based on neural network for the second usage of retired lithiumion batteries[C]//2020 Chinese Automation Congress (CAC). November 6-8, 2020. Shanghai, China. IEEE, 2020: 1193-1197. DOI: 10.1109/cac51589.2020.9327171. |
[51] | JIANG T, SUN J L, WANG T R, et al. Sorting and grouping optimization method for second-use batteries considering aging mechanism[J]. Journal of Energy Storage, 2021, 44: 103264. DOI: 10.1016/j.est.2021.103264. |
[52] | TAO S Y, LIU H Z, SUN C B, et al. Collaborative and privacy-preserving retired battery sorting for profitable direct recycling via federated machine learning[J]. Nature Communications, 2023, 14: 8032. DOI: 10.1038/s41467-023-43883-y. |
[53] | 王帅, 尹忠东, 郑重, 等. 基于电压曲线的退役电池模组分选方法[J]. 中国电机工程学报, 2020, 40(8): 2691-2705. DOI: 10.13334/j. 0258-8013.pcsee.190659. |
WANG S, YIN Z D, ZHENG Z, et al. A sorting method for retired battery modules based on voltage curves[J]. Proceedings of the CSEE, 2020, 40(8): 2691-2705. DOI: 10.13334/j.0258-8013.pcsee.190659. | |
[54] | SUN B, PAN J L, WU Z Y, et al. Adaptive evolution enhanced physics-informed neural networks for time-variant health prognosis of lithium-ion batteries[J]. Journal of Power Sources, 2023, 556: 232432. DOI: 10.1016/j.jpowsour.2022.232432. |
[55] | 颜宁, 钟瑶, 李相俊, 等. 基于SOP动态一致性的退役动力电池模组筛选方法研究[J]. 太阳能学报, 2024, 45(2): 274-282. DOI: 10. 19912/j.0254-0096.tynxb.2022-1653. |
YAN N, ZHONG Y, LI X J, et al. Research on screening method of retired power battery module based on sop dynamic consistency[J]. Acta Energiae Solaris Sinica, 2024, 45(2): 274-282. DOI: 10.19912/j.0254-0096.tynxb.2022-1653. | |
[56] | 颜宁, 武中立, 李相俊, 等. 基于数字孪生技术的退役电池模组动态功能状态筛选方法研究[J]. 中国电机工程学报, 2025, 45(6): 2210-2220. DOI: 10.13334/j.0258-8013.pcsee.232061. |
YAN N, WU Z L, LI X J, et al. Screening method for retired battery modules based on digital twin technology and SOF dynamic characteristics[J]. Proceedings of the CSEE, 2025, 45(6): 2210-2220. DOI: 10.13334/j.0258-8013.pcsee.232061. | |
[57] | XIONG W, MO Y M, YAN C. Online state-of-health estimation for second-use lithium-ion batteries based on weighted least squares support vector machine[J]. IEEE Access, 2020, 9: 1870-1881. |
[58] | WANG J G, YANG H X, WANG Z P, et al. State of health analysis of batteries at different stages based on real-world vehicle data and machine learning[J]. Journal of Energy Storage, 2024, 88: 111616. DOI: 10.1016/j.est.2024.111616. |
[59] | LIU T Q, CHEN X, PENG Q, et al. An enhanced sorting method for retired battery with feature selection and multiple clustering[J]. Journal of Energy Storage, 2024, 87: 111422. DOI: 10.1016/j.est. 2024.111422. |
[60] | NI Y L, XU J N, ZHU C B, et al. Accurate residual capacity estimation of retired LiFePO4 batteries based on mechanism and data-driven model[J]. Applied Energy, 2022, 305: 117922. DOI: 10.1016/j.apenergy.2021.117922. |
[61] | 雷旭, 张春玲, 于明加, 等. 退役电池快速检测分类方法研究[J]. 电子测量与仪器学报, 2023, 37(4): 213-222. DOI: 10.13382/j.jemi.B2206048. |
LEI X, ZHANG C L, YU M J, et al. Research on fast screening and classification of retired batteries[J]. Journal of Electronic Measurement and Instrumentation, 2023, 37(4): 213-222. DOI: 10.13382/j.jemi.B2206048. | |
[62] | WANG Y D, TAN J, LIU Z J, et al. Lithium-ion battery screening by K-means with DBSCAN for denoising[J]. Computers, Materials & Continua, 2020, 65(3): 2111-2122. DOI: 10.32604/cmc.2020. 011098. |
[63] | FAN W J, JIANG B, WANG X Y, et al. Enhancing capacity estimation of retired electric vehicle lithium-ion batteries through transfer learning from electrochemical impedance spectroscopy[J]. eTransportation, 2024, 22: 100362. DOI: 10.1016/j.etran. 2024.100362. |
[64] | 冯添润, 杨婷, 孟翔. 基于谱聚类的退役电池一致性评估方法研究[J]. 机电信息, 2024(9): 28-33. DOI: 10.19514/j.cnki.cn32-1628/tm.2024.09.007. |
FENG T R, YANG T, MENG X. Research on consistency evaluation method of retired batteries based on spectral clustering[J]. Mechanical and Electrical Information, 2024(9): 28-33. DOI: 10.19514/j.cnki.cn32-1628/tm.2024.09.007. | |
[65] | CHEN L, HE M P, WU S X, et al. Multi-algorithm fusion-based state of energy assessment of retired lithium-ion batteries[J]. Journal of Energy Storage, 2025, 105: 114690. DOI: 10.1016/j.est.2024.114690. |
[66] | XIONG W, XIE F, XU G, et al. Co-estimation of the model parameter and state of charge for retired lithium-ion batteries over a wide temperature range and battery degradation scope[J]. Renewable Energy, 2023, 218: 119277. DOI: 10.1016/j.renene. 2023.119277. |
[67] | 颜宁, 李相俊, 钟瑶, 等. 基于静动态一致性的退役动力电池模组阶梯式筛选方法[J]. 中国电机工程学报, 2023, 43(5): 2060-2070. DOI: 10.13334/j.0258-8013.pcsee.213256. |
YAN N, LI X J, ZHONG Y, et al. Stepwise screening method for retired power battery modules based on static-dynamic consistency[J]. Proceedings of the CSEE, 2023, 43(5): 2060-2070. DOI: 10.13334/j.0258-8013.pcsee.213256. | |
[68] | KIM J, SHIN J, CHUN C, et al. Stable configuration of a Li-ion series battery pack based on a screening process for improved voltage/SOC balancing[J]. IEEE Transactions on Power Electronics, 2012, 27(1): 411-424. DOI: 10.1109/TPEL.2011.2158553. |
[69] | ZHANG Y J, LIU B C, ZHANG H G, et al. Joint estimation of SOC and peak power capability for series reused battery pack based on screening process method[J]. Energy, 2024, 313: 133940. DOI: 10.1016/j.energy.2024.133940. |
[70] | YIN H J, LI Y, KANG Y Z, et al. A two-stage sorting method combining static and dynamic characteristics for retired lithium-ion battery echelon utilization[J]. Journal of Energy Storage, 2023, 64: 107178. DOI: 10.1016/j.est.2023.107178. |
[71] | LIU F D, CHEN J Y, QIN D C, et al. Research on appearance detection, sorting, and regrouping technology of retired batteries for electric vehicles[J]. Sustainability, 2023, 15(21): 15523. DOI: 10.3390/su152115523. |
[72] | JIANG Y, JIANG J C, ZHANG C P, et al. Recognition of battery aging variations for LiFePO4 batteries in 2nd use applications combining incremental capacity analysis and statistical approaches[J]. Journal of Power Sources, 2017, 360: 180-188. DOI: 10.1016/j.jpowsour.2017.06.007. |
[73] | PAN R, XIAO X Y, FAN J Z, et al. Multi-stage deep sorting strategy for retired batteries based on the clustering of static and dynamic features[J]. Journal of Energy Storage, 2024, 99: 113387. DOI: 10.1016/j.est.2024.113387. |
[74] | GARG A, YUN L, GAO L, et al. Development of recycling strategy for large stacked systems: Experimental and machine learning approach to form reuse battery packs for secondary applications[J]. Journal of Cleaner Production, 2020, 275: 124152. DOI: 10.1016/j.jclepro.2020.124152. |
[1] | 张大兴, 黄泽荣, 王祥东, 王延凯, 蔡冰子, 袁昊宇, 田明明, 袁英平, 曹原. 基于功率变换器的梯次利用电池系统均衡控制策略[J]. 储能科学与技术, 2024, 13(5): 1635-1642. |
[2] | 申菲. 锂离子电池安全性及预警措施研究[J]. 储能科学与技术, 2024, 13(10): 3515-3517. |
[3] | 范茂松, 耿萌萌, 赵光金, 杨凯, 王放放, 刘皓. 基于多频点阻抗的梯次利用电池分选技术研究[J]. 储能科学与技术, 2023, 12(7): 2202-2210. |
[4] | 赵光金, 李博文, 胡玉霞, 董锐锋, 王放放. 退役动力电池梯次利用技术及工程应用概述[J]. 储能科学与技术, 2023, 12(7): 2319-2332. |
[5] | 于会群, 胡哲豪, 彭道刚, 孙浩益. 退役动力电池回收及其在储能系统中梯次利用关键技术[J]. 储能科学与技术, 2023, 12(5): 1675-1685. |
[6] | 康小平, 聂慧慧, 郜敏, 吴凤彪. 电动汽车全生命周期碳排放[J]. 储能科学与技术, 2023, 12(3): 976-984. |
[7] | 宋爽, 李福, 唐西胜. 锂离子电池安全状态评估研究进展[J]. 储能科学与技术, 2023, 12(11): 3545-3555. |
[8] | 耿萌萌, 范茂松, 杨凯, 赵光金, 谭震, 高飞, 张明杰. 基于EIS和神经网络的退役电池SOH快速估计[J]. 储能科学与技术, 2022, 11(2): 673-678. |
[9] | 李雄, 李培强. 梯次利用动力电池规模化应用经济性及经济边界分析[J]. 储能科学与技术, 2022, 11(2): 717-725. |
[10] | 王鲁, 王峰, 徐竞, 赵延鹏, 李玮, 王艳艳, 王应彪. 基于SOM+SVM的退役锂离子电池分选[J]. 储能科学与技术, 2022, 11(11): 3623-3630. |
[11] | 任璞, 王顺利, 何明芳, 范永存, 曹文, 谢伟. 基于内阻增加和容量衰减双重标定的锂电池健康状态评估[J]. 储能科学与技术, 2021, 10(2): 738-743. |
[12] | 杜帮华, 张宇, 吴铁洲, 何衍林, 李子龙. 梯次利用锂离子电池等效模型参数在线辨识方法[J]. 储能科学与技术, 2021, 10(1): 342-348. |
[13] | 解坤, 姜成龙, 吴亮璇, 常宏, 樊彬, 陈立铎, 温浩然. 基于退役电池梯次利用的源-储容量优化配置[J]. 储能科学与技术, 2020, 9(S1): 23-30. |
[14] | 卢婷, 杨文强. 锂离子电池全生命周期内评估参数及评估方法综述[J]. 储能科学与技术, 2020, 9(3): 657-669. |
[15] | 刘仕强, 王芳, 马天翼, 林春景, 白广利, 韦振, 陈立铎. 磷酸铁锂动力电池备电工况寿命试验研究及分析[J]. 储能科学与技术, 2020, 9(2): 638-644. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||