| [1] |
李建林, 张则栋, 谭宇良, 等. 碳中和目标下储能发展前景综述[J]. 电气时代, 2022(1): 61-65.
|
|
LI J L, ZHANG Z D, TAN Y L, et al. Review on the development prospect of energy storage under the goal of carbon neutrality[J]. Electric Age, 2022(1): 61-65.
|
| [2] |
李相俊, 赵珊珊, 惠东. 面向新型电力系统的大型储能电站关键技术发展趋势分析与展望[J]. 供用电, 2022, 39(7): 2-8, 24. DOI: 10. 19421/j.cnki.1006-6357.2022.07.001.
|
|
LI X J, ZHAO S S, HUI D. Development trend analysis and prospect of key technologies of large energy storage station in new type power system[J]. Distribution & Utilization, 2022, 39(7): 2-8, 24. DOI: 10.19421/j.cnki.1006-6357.2022.07.001.
|
| [3] |
路澍柘. 浅析储能未来商运模式与发展形势[J]. 能源与节能, 2023(2): 55-57, 197. DOI: 10.16643/j.cnki.14-1360/td.2023.02.027.
|
|
LU S Z. Future commercial operation mode and development situation of energy storage[J]. Energy and Energy Conservation, 2023(2): 55-57, 197. DOI: 10.16643/j.cnki.14-1360/td.2023.02.027.
|
| [4] |
马静, 江依义, 沈旻, 等. 锂离子电池储能产业发展现状与对策建议[J]. 浙江化工, 2022, 53(12): 17-23.
|
|
MA J, JIANG Y Y, SHEN M, et al. Development status and countermeasures of lithium ion battery energy storage industry[J]. Zhejiang Chemical Industry, 2022, 53(12): 17-23.
|
| [5] |
王鹏博, 郑俊超. 锂离子电池的发展现状及展望[J]. 自然杂志, 2017, 39(4): 283-289.
|
|
WANG P B, ZHENG J C. The present situation and expectation of lithium-ion battery[J]. Chinese Journal of Nature, 2017, 39(4): 283-289.
|
| [6] |
顾正建, 陶倩艺, 杨智皋, 等. 磷酸铁锂与三元锂离子电池加热下的热失控行为[J]. 电池, 2024, 54(4): 513-518.DOI:10.19535/j.1001-1579.2024.04.015.
|
|
GU Z J, TAO Q Y, YANG Z G, et al. Thermal runaway behavior of LiFePO4 and ternary Li-ion batteries under heating[J]. Dianchi(Battery Bimonthly), 2024, 54(4): 513-518. DOI:10.19535/j.1001-1579.2024.04.015.
|
| [7] |
MALLICK S, GAYEN D. Thermal behaviour and thermal runaway propagation in lithium-ion battery systems-A critical review[J]. Journal of Energy Storage, 2023, 62: 106894. DOI: 10.1016/j.est.2023.106894.
|
| [8] |
CHAVAN S, SON S E, VENKATESWARLU B, et al. Impact of external heating and state of charge on discharge performance and thermal runaway risk in 21700 Li-ion batteries[J]. Case Studies in Thermal Engineering, 2024, 63: 105299. DOI: 10.1016/j.csite.2024.105299.
|
| [9] |
LIU Z J, HAN K H, ZHANG Q, et al. Thermal safety focus and early warning of lithium-ion batteries: A systematic review[J]. Journal of Energy Storage, 2025, 115: 115944. DOI: 10.1016/j.est.2025.115944.
|
| [10] |
胡东烨, 金泽. 锂电池储能系统的火灾特性分析及扑救要点[J]. 时代汽车, 2024(1): 91-93.
|
|
HU D Y, JIN Z. Fire characteristic analysis of lithium ion battery during[J]. Auto Time, 2024(1): 91-93.
|
| [11] |
曹文炅, 雷博, 史尤杰, 等. 韩国锂离子电池储能电站安全事故的分析及思考[J]. 储能科学与技术, 2020, 9(5): 1539-1547. DOI: 10. 19799/j.cnki.2095-4239.2020.0127.
|
|
CAO W J, LEI B, SHI Y J, et al. Ponderation over the recent safety accidents of lithium-ion battery energy storage stations in South Korea[J]. Energy Storage Science and Technology, 2020, 9(5): 1539-1547. DOI: 10.19799/j.cnki.2095-4239.2020.0127.
|
| [12] |
IM D H, CHUNG J B. Social construction of fire accidents in battery energy storage systems in Korea[J]. Journal of Energy Storage, 2023, 71: 108192. DOI: 10.1016/j.est.2023.108192.
|
| [13] |
张华东, 张宏亮. 一起火电厂储能系统火灾事故的调查与认定[J]. 消防科学与技术, 2017, 36(10): 1473-1476.
|
|
ZHANG H D, ZHANG H L. Investigation and determination of an energy storage system fire of a thermal power plant[J]. Fire Science and Technology, 2017, 36(10): 1473-1476.
|
| [14] |
EDWARDS P P, DOBSON P J. Remarks on the safety of lithium-ion batteries for large-scale battery energy storage systems (BESS) in the UK[J]. Fire Technology, 2024: DOI: 10.1007/s10694-024-01682-x.
|
| [15] |
郭鹏宇, 王智睿, 钱磊. 储能电站磷酸铁锂电池预制舱火灾事故分析[J]. 电力安全技术, 2019, 21(12): 26-30.
|
|
GUO P Y, WANG Z R, QIAN L. Analysis of a fire accident in the prefabricated cabin of lithium iron phosphate battery in an energy storage power station[J]. Electric Safety Technology, 2019, 21(12): 26-30.
|
| [16] |
李首顶, 李艳, 田杰, 等. 锂离子电池电力储能系统消防安全现状分析[J]. 储能科学与技术, 2020, 9(5): 1505-1516. DOI: 10.19799/j.cnki.2095-4239.2020.0111.
|
|
LI S D, LI Y, TIAN J, et al. Current status and emerging trends in the safety of Li-ion battery energy storage for power grid applications[J]. Energy Storage Science and Technology, 2020, 9(5): 1505-1516. DOI: 10.19799/j.cnki.2095-4239.2020.0111.
|
| [17] |
LI J, WANG Q, LI Y, et al. Research progress on fire protection technology of containerized Li-ion battery energy storage system[C/OL]//2021 IEEE Sustainable Power and Energy Conference (iSPEC). Nanjing: CSEE, IEEE PES, 2021: 1105-1109.
|
| [18] |
MOA E H Y, GO Y I. Large-scale energy storage system: Safety and risk assessment[J]. Sustainable Energy Research, 2023, 10(1): 13. DOI: 10.1186/s40807-023-00082-z.
|
| [19] |
JIA Z Z, JIN K Q, MEI W X, et al. Advances and perspectives in fire safety of lithium-ion battery energy storage systems[J]. eTransportation, 2025, 24: 100390. DOI: 10.1016/j.etran.2024. 100390.
|
| [20] |
国家市场监督管理总局, 国家标准化管理委员会. 电力储能用锂离子电池: GB/T 36276—2023[S]. 北京: 中国标准出版社, 2023.
|
|
State Administration for Market Regulation, Standardization Administration of the People's Republic of China. Lithium ion battery for electrical energy storage: GB/T 36276—2023[S]. Beijing: Standards Press of China, 2023.
|
| [21] |
WANG Z P, YUAN J, ZHU X Q, et al. Overcharge-to-thermal-runaway behavior and safety assessment of commercial lithium-ion cells with different cathode materials: A comparison study[J]. Journal of Energy Chemistry, 2021, 55: 484-498. DOI: 10.1016/j.jechem.2020.07.028.
|
| [22] |
LIU K, LIU Y Y, LIN D C, et al. Materials for lithium-ion battery safety[J]. Science Advances, 2018, 4(6): eaas9820. DOI: 10. 1126/sciadv.aas9820.
|
| [23] |
朱鸿章, 吴传平, 周天念, 等. 磷酸铁锂和三元锂电池外部过热条件下的热失控特性[J]. 储能科学与技术, 2022, 11(1): 201-210. DOI: 10.19799/j.cnki.2095-4239.2021.0369.
|
|
ZHU H Z, WU C P, ZHOU T N, et al. Thermal runaway characteristics of LiFePO4 and ternary lithium batteries with external overheating[J]. Energy Storage Science and Technology, 2022, 11(1): 201-210. DOI: 10.19799/j.cnki.2095-4239.2021.0369.
|
| [24] |
YUAN L M, DUBANIEWICZ T, ZLOCHOWER I, et al. Experimental study on thermal runaway and vented gases of lithium-ion cells[J]. Process Safety and Environmental Protection, 2020, 144: 186-192. DOI: 10.1016/j.psep.2020.07.028.
|
| [25] |
GOLUBKOV A W, FUCHS D, WAGNER J, et al. Thermal-runaway experiments on consumer Li-ion batteries with metal-oxide and olivin-type cathodes[J]. RSC Advances, 2014, 4(7): 3633-3642. DOI: 10.1039/C3RA45748F.
|
| [26] |
LI K J, LI J H, GAO X L, et al. Effect of preload forces on multidimensional signal dynamic behaviours for battery early safety warning[J]. Journal of Energy Chemistry, 2024, 92: 484-498. DOI: 10.1016/j.jechem.2023.12.045.
|
| [27] |
中华人民共和国公安部. 建筑设计防火规范: GB 50016—2014 (2018年版)[S]. 北京: 中国计划出版社, 2004.The Ministry of Public Security of the People's Republic of China. Architectural design code for fire protection: GB 50016—2014(2018 Edition)[S]. Beijing: China Planning Press, 2004.
|
| [28] |
BAI Z J, LI X H, DENG J, et al. Overview of anti-fire technology for suppressing thermal runaway of lithium battery: Material, performance, and applications[J]. Journal of Power Sources, 2025, 640: 236767. DOI: 10.1016/j.jpowsour.2025.236767.
|
| [29] |
WANG Z R, WANG K, WANG J L, et al. Inhibition effect of liquid nitrogen on thermal runaway propagation of lithium ion batteries in confined space[J]. Journal of Loss Prevention in the Process Industries, 2022, 79: 104853. DOI: 10.1016/j.jlp.2022.104853.
|
| [30] |
CAO Y F, WANG K, WANG Z R, et al. Utilization of liquid nitrogen as efficient inhibitor upon thermal runaway of 18650 lithium ion battery in open space[J]. Renewable Energy, 2023, 206: 1097-1105. DOI: 10.1016/j.renene.2023.02.117.
|