[1] |
李建林, 张则栋, 谭宇良, 等. 碳中和目标下储能发展前景综述[J]. 电气时代, 2022(1): 61-65.
|
|
LI Jianlin, ZHANG Zedong, TAN Yuliang, et al. Prospect of energy storage development under carbon neutrality goals. Electrical Era[J], 2022(1): 61-65.
|
[2] |
李相俊, 赵珊珊, 惠东. 面向新型电力系统的大型储能电站关键技术发展趋势分析与展望[J]. 供用电, 2022, 39(7): 2-8+24.
|
|
LI Xiangjun, ZHAO Shanshan, HUI Dong. Analysis and prospect of key technology development trends for large-scale energy storage stations under the new power system. Power Supply and Use[J], 2022, 39(7): 2-8+24.
|
[3] |
路澍柘. 浅析储能未来商运模式与发展形势[J]. 能源与节能, 2023(2): 55-57+197.
|
|
LU Shuzhe. Brief analysis on future commercial operation modes and development trends of energy storage. Energy and Energy Conservation[J], 2023(2): 55-57+197.
|
[4] |
马静, 江依义, 沈旻, 等. 锂离子电池储能产业发展现状与对策建议[J]. 浙江化工, 2022, 53(12): 17-23.
|
|
MA Jing, JIANG Yiyi, SHEN Min, et al. Current status and policy suggestions for the development of the lithium-ion battery energy storage industry. Zhejiang Chemical Industry[J], 2022, 53(12): 17-23.
|
[5] |
王鹏博, 郑俊超. 锂离子电池的发展现状及展望[J]. 自然杂志, 2017, 39(4): 283-289.
|
|
WANG Pengbo, ZHENG Junchao. Current development status and prospects of lithium-ion batteries. Chinese Journal of Nature[J], 2017, 39(4): 283-289.
|
[6] |
王学军, 刘速, 乔祥祺, 等. 锂离子电池储能系统安全与标准研究进展[J]. 浙江化工, 2023, 54(10): 8-15.
|
|
WANG Xuejun, LIU Su, QIAO Xiangqi, et al. Research progress on safety and standards of lithium-ion battery energy storage systems. Zhejiang Chemical Industry[J], 2023, 54(10): 8-15.
|
[7] |
MALLICK S, GAYEN D. Thermal behaviour and thermal runaway propagation in lithium-ion battery systems-A critical review[J]. JOURNAL OF ENERGY STORAGE, 2023, 62: 106894.
|
[8] |
CHAVAN S, SON S E, VENKATESWARLU B, et al. Impact of external heating and state of charge on discharge performance and thermal runaway risk in 21700 Li-ion batteries[J]. Case Studies in Thermal Engineering, 2024, 63: 105299.
|
[9] |
LIU Z, HAN K, ZHANG Q, et al. Thermal safety focus and early warning of lithium-ion batteries: A systematic review[J]. Journal of Energy Storage, 2025, 115: 115944.
|
[10] |
胡东烨, 金泽. 锂电池储能系统的火灾特性分析及扑救要点[J]. 时代汽车, 2024(1): 91-93.
|
|
HU Dongye, JIN Ze. Fire characteristics analysis and firefighting strategies of lithium battery energy storage systems. Times Auto[J], 2024(1): 91-93.
|
[11] |
曹文炅, 雷博, 史尤杰, 等. 韩国锂离子电池储能电站安全事故的分析及思考[J]. 储能科学与技术, 2020, 9(5): 1539-1547.
|
|
CAO Wenjiong, et al. Analysis and reflections on safety accidents in South Korea's lithium-ion battery energy storage stations[J]. Energy Storage Science and Technology,2020, 9(5): 1539-1547.
|
[12] |
IM D H, CHUNG J B. Social construction of fire accidents in battery energy storage systems in Korea[J]. Journal of Energy Storage, 2023, 71: 108192.
|
[13] |
张华东, 张宏亮. 一起火电厂储能系统火灾事故的调查与认定[J]. 消防科学与技术, 2017, 36(10): 1473-1476.
|
|
ZHANG Huadong, ZHANG Hongliang, et al. Investigation and determination of an energy storage system fire of a thermal power plant[J]. Fire Science and Technology, 2017, 36(10): 1473-1476.
|
[14] |
EDWARDS P P, DOBSON P J. Remarks on the Safety of Lithium -Ion Batteries for Large-Scale Battery Energy Storage Systems (BESS) in the UK[J]. Fire Technology, 2024.
|
[15] |
郭鹏宇, 王智睿, 钱磊. 储能电站磷酸铁锂电池预制舱火灾事故分析[J]. 电力安全技术, 2019, 21(12): 26-30.
|
|
GUO Pengyu, WANG Zhirui, QIAN Lei. Analysis of a fire accident in the prefabricated cabin of lithium iron phosphate battery in an energy storage power station[J]. Electric Safety Technology, 2019, 21(12): 26-30.
|
[16] |
李首顶, 李艳, 田杰, 等. 锂离子电池电力储能系统消防安全现状分析[J]. 储能科学与技术, 2020, 9(5): 1505-1516.
|
|
LI Shouding, et al. Current status and emerging trends in the safety of Li-ion battery energy storage for power grid applications. Energy Storage Science and Technology[J], 2020, 9(5): 1505-1516.
|
[17] |
LI J, WANG Q, LI Y, et al. Research progress on fire protection technology of containerized Li-ion battery energy storage system[C/OL]//2021 IEEE Sustainable Power and Energy Conference (iSPEC). 2021: 1105-1109[2025-06-19]. https://ieeexplore.ieee.org/abstract/document/9735658.
|
[18] |
MOA E H Y, GO Y I. Large-scale energy storage system: safety and risk assessment[J]. Sustainable Energy Research, 2023, 10(1): 13.
|
[19] |
JIA Z, JIN K, MEI W, et al. Advances and perspectives in fire safety of lithium-ion battery energy storage systems[J]. eTransportation, 2025, 24: 100390.
|
[20] |
U.S. Department of EnergyDOE. https://www.energy.gov/. (2025.3.30)
|
[21] |
International Energy Agency (IEA). https://www.iea.org/. (2025.3.30)
|
[22] |
全国电力储能标准化技术委员会(SAC/TC550). 电力储能用锂离子电池 GB/T 36276[S]. 北京: 中国标准出版社, 2023.
|
|
National Technical Committee 550 on Electric Energy Storage. Lithium Ion Battery for Electrical Energy Storage GB/T 36276[S]. Beijing: Standards Press of China, 2023.
|
[23] |
WANG Z, YUAN J, ZHU X, et al. Overcharge-to-thermal-runaway behavior and safety assessment of commercial lithium-ion cells with different cathode materials: A comparison study[J]. Journal of Energy Chemistry, 2021, 55: 484-498.
|
[24] |
LIU K, LIU Y, LIN D, et al. Materials for lithium-ion battery safety. [J]. Science Advances, 2018, 4(6).
|
[25] |
朱鸿章, 吴传平, 周天念, 等. 磷酸铁锂和三元锂电池外部过热条件下的热失控特性[J]. 储能科学与技术, 2022, 11(1): 201-210.
|
|
ZHU Hongzhang, WU Chuanping, ZHOU Tiannian, et al.Thermal runaway characteristics of LiFePO4 and ternary lithium batteries with external overheating[J]. Energy Storage Science and Technology, 2022, 11(1): 201-210
|
[26] |
YUAN L, DUBANIEWICZ T, ZLOCHOWER I, et al. Experimental study on thermal runaway and vented gases of lithium-ion cells[J]. Process Safety and Environmental Protection, 2020, 144: 186-192.
|
[27] |
GOLUBKOV A W, FUCHS D, WAGNER J, et al. Thermal-runaway experiments on consumer Li-ion batteries with metal-oxide and olivin-type cathodes[J]. RSC Advances, 2014, 4(7): 3633-3642.
|
[28] |
LI K, LI J, GAO X, et al. Effect of preload forces on multidimensional signal dynamic behaviours for battery early safety warning[J]. Journal of Energy Chemistry, 2024, 92: 484-498.
|
[29] |
中华人民共和国住房和城乡建设部. 建筑设计防火规范GB 50016—2014 (2018年版)[S]. 北京: 中国标准出版社, 2018.
|
|
Ministry of Housing and Urban-Rural Development of the People's Republic of China. Code for fire protection design of buildings. GB 50016—2014(2018)[S] . Beijing: Standards Press of China, 2018.
|
[30] |
BAI Z, LI X, DENG J, et al. Overview of anti-fire technology for suppressing thermal runaway of lithium battery: Material, performance, and applications[J]. Journal of Power Sources, 2025, 640: 236767.
|
[31] |
WANG Z, WANG K, WANG J, et al. Inhibition effect of liquid nitrogen on thermal runaway propagation of lithium ion batteries in confined space[J]. JOURNAL OF LOSS PREVENTION IN THE PROCESS INDUSTRIES, 2022, 79: 104853.
|
[32] |
CAO Y, WANG K, WANG Z, et al. Utilization of liquid nitrogen as efficient inhibitor upon thermal runaway of 18650 lithium ion battery in open space[J]. RENEWABLE ENERGY, 2023, 206: 1097-1105.
|