储能科学与技术 ›› 2025, Vol. 14 ›› Issue (11): 4098-4111.doi: 10.19799/j.cnki.2095-4239.2025.0493

• 储能材料与器件 • 上一篇    下一篇

焦磷酸亚锰铁固溶体连续化生产装置设计

汤凯1,2()   

  1. 1.清华大学安全科学学院,北京 100084
    2.浙江愚成新材料有限公司,浙江 宁波 315100
  • 收稿日期:2025-05-26 修回日期:2025-07-01 出版日期:2025-11-28 发布日期:2025-11-24
  • 作者简介:汤凯(1982—),男,硕士,高级工程师,研究方向为锂离子电池正极材料,E-mail:tansanzan@qq.com

Design of a continuous production facility for solid solution manganese iron pyrophosphate

Kai TANG1,2()   

  1. 1.School of Safety Science and Engineering, Tsinghua University, Beijing 100084, China
    2.Zhejiang Yucheng New Material Co. , Ltd. , Ningbo 315100, Zhejiang, China
  • Received:2025-05-26 Revised:2025-07-01 Online:2025-11-28 Published:2025-11-24

摘要:

锂离子电池正极材料磷酸锰铁锂(LiFe1-y Mn y PO4,LMFP)因两相(LiFePO4与LiMnPO4)堆叠、锰铁分布不均及电化学性能退化等问题,严重阻碍其商业化应用。本研究提出基于焦磷酸亚锰铁[(Fe1-y Mn y )2P2O7,MFP]固溶体的前驱体均匀化策略,通过开发和设计雾化高温合成(AHTS)炉,实现MFP的连续化生产,进而制备高性能LMFP正极材料。MFP前驱体以原子级Fe/Mn共沉淀为核心,将均匀性传递至LMFP晶格,抑制反位缺陷并消除两相堆叠共存,突破传统改性方法(如碳包覆、掺杂等)的局限。AHTS-MFP工艺采用微米级雾状液滴反应器,结合多约束耦合迭代优化设计方法,开发专用合成装置。通过三维流体力学-热力学-化学反应动力学多场耦合仿真,优化流场、温度场及氧浓度控制,形成稳定气旋锁结构,确保雾状液滴在炉膛内依次经历蒸发、共沉淀、干燥与缩合反应,停留时间大于15秒,实现材料的高结晶度与元素均质性。装置关键设计涵盖对称喷嘴阵列、切向火道燃烧系统及多层阻氧复合结构,结合动态氮气注入技术,将炉内氧浓度精准控制在小于1%。生产试验所制(Fe0.35Mn0.65)2P2O7样品的SEM图像、XRD图谱、HAADF-STEM图像与EDS映射图显示样品为各元素分布均匀的固溶体材料。由其制备的LMFP正极材料LiFe0.35Mn0.65PO4呈均一橄榄石型结构,XRD无杂相,HAADF-STEM图像与EDS映射图显示样品各元素分布均匀,证实前驱体的均匀性成功传递至终产物。本研究通过工艺与装备创新,攻克LMFP工业化中两相堆叠与元素分布不均的难题,为其工业化生产提供了关键技术支撑。

关键词: 焦磷酸亚锰铁, 磷酸锰铁锂, 雾化高温合成, 固溶体

Abstract:

The commercialization of lithium manganese iron phosphate (LiFe1-y Mn y PO4, LMFP) as a cathode material for lithium-ion batteries has been severely hindered by challenges, such as two-phase stacking (LiFePO4 and LiMnPO4), inhomogeneous Mn/Fe distribution, and electrochemical performance degradation. This study proposes a precursor homogenization strategy based on manganese iron pyrophosphate [(Fe1-y Mn y )2P2O7, MFP]solid solutions. By designing and developing an atomization high-temperature synthesis (AHTS) roaster, we achieved continuous production of MFP, enabling the preparation of high-performance LMFP cathode materials. The MFP precursor employs atomic-scale Fe/Mn coprecipitation to transfer uniformity to the LMFP lattice, suppressing anti-site defects and eliminating the coexistence of two-phase stacking, thereby overcoming the limitations of traditional modification methods such as carbon coating and doping). The AHTS-MFP process employs a micron-scale atomized droplet reactor and a multi-constraint coupled iterative optimization design method to create a specialized synthesis device. Three-dimensional coupled simulations integrating thermodynamics, fluid dynamics, and chemical reaction kinetics were used to optimize the flow field, temperature field, and oxygen concentration control, resulting in a stable "gas vortex lock" structure. This ensures that the atomized droplets sequentially undergo evaporation, coprecipitation, drying, and condensation reactions within the furnace, with a residence time exceeding 15 seconds, leading to high crystallinity and elemental homogeneity. Key innovations include symmetrical nozzle arrays, a tangential flue combustion system, a multilayer oxygen-blocking composite structure, and dynamic nitrogen injection technology to precisely control the oxygen concentration in the roaster below 1%. The production-test samples of (Fe0.35Mn0.65)2P2O7 were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), HAADF-STEM and energy-dispersive spectroscopy (EDS) mapping, confirming that the samples are solid solution materials with uniform elemental distribution. The resulting LMFP cathode material, LiFe0.35Mn0.65PO4, exhibited a uniform olivine-type structure. The XRD pattern shows no secondary phases, and the HAADF-STEM images and EDS mapping results indicate that each element in the sample is uniformly distributed, confirming that the uniformity of the precursor is successfully transmitted to the final product. Moreover, this study addresses the challenges of two-phase stacking and uneven elemental distribution in LMFP industrialization through process and equipment innovation, providing key technical support for its industrial production.

Key words: manganese iron pyrophosphate, lithium manganese iron phosphate, atomization high-temperature synthesis, solid solution

中图分类号: