| [1] |
JANG K, SONG H J, PARK J B, et al. Magnesium fluoride-engineered UiO-66 artificial protection layers for dendrite-free lithium metal batteries[J]. Energy & Environmental Science, 2024, 17(13): 4622-4633. DOI: 10.1039/D4EE01428F.
|
| [2] |
李晶晶, 蒋丹枫, 李嘉鑫, 等. 高比容量富锂单晶材料的研究进展[J]. 储能科学与技术, 2025, 14(8): 3122-3137.
|
|
LI J J, JIANG D F, LI J X, et al. Research progress on high specific-capacity lithium-rich single crystal materials[J]. Energy Storage Science and Technology, 2025, 14(8): 3122-3137.
|
| [3] |
LI Y H, XIAO X L, ZHANG L L, et al. Co@CoO core-shell cross-linked framework modified 3D Cu for dendrite-free lithium anode[J]. Chemical Engineering Journal, 2024, 491: 151922. DOI: 10.1016/j.cej.2024.151922.
|
| [4] |
YANG T J, ZHENG W R, XIE Y H, et al. A lithiophilic bimetallic oxide interlayer enabling high-rate and dendrite-free lithium metal anodes[J]. Journal of Materials Chemistry A, 2025, 13(21): 15673-15679. DOI: 10.1039/D5TA01544H.
|
| [5] |
HAO Z M, LU Y, YANG G J, et al. Designing current collectors to stabilize Li metal anodes[J]. Advanced Materials, 2025, 37(8): 2415258. DOI: 10.1002/adma.202415258.
|
| [6] |
GUO G D, ZHANG K, ZHU K P, et al. Refined pore structure design and surface modification of 3D porous copper achieving highly stable dendrite-free lithium-metal anode[J]. Advanced Functional Materials, 2024, 34(38): 2402490. DOI: 10.1002/adfm. 202402490.
|
| [7] |
WANG X C, ZHANG B, CHEN Z H, et al. Achieving a higher lithium density in anodes surpassing that of pure metallic lithium for high-energy-density batteries[J]. Energy & Environmental Science, 2025, 18(11): 5365-5377. DOI: 10.1039/D4EE05289G.
|
| [8] |
WANG K, WANG C T, LIU S, et al. Pre-constructing a mortice-tenon joint based-layer to achieve an enhanced SEI on Li metal anode[J]. Energy & Environmental Science, 2025, 18(5): 2610-2621. DOI: 10.1039/D4EE04617J.
|
| [9] |
YANG T, XU X J, CHEN S P, et al. A lithiophilic donor-acceptor polymer modified separator for high-performance lithium metal batteries[J]. Angewandte Chemie International Edition, 2025, 64(9): e202420973. DOI: 10.1002/anie.202420973.
|
| [10] |
REN W X, ZHU K R, ZHANG W, et al. Dendrite-free lithium metal battery enabled by dendritic mesoporous silica coated separator[J]. Advanced Functional Materials, 2023, 33(34): 2301586. DOI: 10.1002/adfm.202301586.
|
| [11] |
SHI Y J, WANG Z B, GAO H, et al. A self-supported, three-dimensional porous copper film as a current collector for advanced lithium metal batteries[J]. Journal of Materials Chemistry A, 2019, 7(3): 1092-1098. DOI: 10.1039/C8TA09384A.
|
| [12] |
HUANG X J, WANG M R, ZHOU Y G, et al. Dual ion regulation enables high-Coulombic-efficiency lithium metal batteries[J]. Nano Energy, 2024, 129: 110031. DOI: 10.1016/j.nanoen.2024.110031.
|
| [13] |
OU Y, HOU W H, ZHU D, et al. Molecular design of electrolyte additives for high-voltage fast-charging lithium metal batteries[J]. Energy & Environmental Science, 2025, 18(3): 1464-1476. DOI: 10.1039/D4EE04282D.
|
| [14] |
LIU Y P, HUANG Y X, ZHANG Q, et al. Vertical & lateral ion-flux modulated ion-conductive SEI for high-performance Li-metal batteries[J]. Energy Storage Materials, 2025, 75: 104020. DOI: 10.1016/j.ensm.2025.104020.
|
| [15] |
WU B L, CHEN C G, RAIJMAKERS L H J, et al. Li-growth and SEI engineering for anode-free Li-metal rechargeable batteries: A review of current advances[J]. Energy Storage Materials, 2023, 57: 508-539. DOI: 10.1016/j.ensm.2023.02.036.
|
| [16] |
LI W H, LI M S, REN H Q, et al. Nitride solid-state electrolytes for all-solid-state lithium metal batteries[J]. Energy & Environmental Science, 2025, 18(10): 4521-4554. DOI: 10.1039/D4EE04927F.
|
| [17] |
YANG W J, LIU Y W, SUN X Y, et al. Solvation-tailored PVDF-based solid-state electrolyte for high-voltage lithium metal batteries[J]. Angewandte Chemie International Edition, 2024, 63(18): e202401428. DOI: 10.1002/anie.202401428.
|
| [18] |
WANG Y D, SI J T, ZHU Y R, et al. Stabilizing lithium metal anodes with bismuth oxide-coated 3D copper foams via an in situ bifunctional mediation layer[J]. Journal of Materials Chemistry A, 2025, 13(18): 13048-13057. DOI: 10.1039/D5TA00228A.
|
| [19] |
PENG G Q, WANG G H, AKBAR A R, et al. Roll-to-roll fabrication of lithium metal anodes with hierarchical lithiophilic structures and controlled deposition for enhanced stability[J]. Energy Storage Materials, 2024, 66: 103205. DOI: 10.1016/j.ensm.2024.103205.
|
| [20] |
CHEN G S, LI Z J, ZHAO T, et al. Stable lithium metal batteries enabled by lithiophilic core-shell nanowires on copper foam[J]. Small, 2024, 20(37): 2401465. DOI: 10.1002/smll.202401465.
|
| [21] |
PANG L, LU J H, YU Y Y, et al. Cationic metal-organic framework arrays to enable dendrite-free lithium metal anodes[J]. ACS Energy Letters, 2024, 9(8): 3746-3753. DOI: 10.1021/acsenergylett. 4c01345.
|
| [22] |
FAN Y C, HE X, LI H J, et al. Lithiophilic Ni3S2 layer decorated nickel foam (Ni3S2@Ni foam) with fast ion transfer kinetics for long-life lithium metal anodes[J]. Chemical Engineering Journal, 2022, 450: 138384. DOI: 10.1016/j.cej.2022.138384.
|
| [23] |
LIU W L, MAN J Z, GUO Y W, et al. Lithiophilic Sn layer via pre-electroplating to realize the uniform stripping/plating for dendrite free Li metal anodes[J]. Chemical Engineering Journal, 2023, 475: 146153. DOI: 10.1016/j.cej.2023.146153.
|
| [24] |
XU J P, HUANG M N, ZHANG C, et al. Hierarchical carbon cloth with Co-Nx nanoneedle arrays: Enabling highly reversible lithium metal anode via enhanced lithiophilicity and structural confinement[J]. Chemical Engineering Journal, 2025, 513: 162883. DOI: 10.1016/j.cej.2025.162883.
|
| [25] |
WANG K, WANG W J, DENG J L, et al. Highly lithiophilic ZnO nanosheets decorated Ni foam as a stable host for high-performance lithium metal anodes[J]. Journal of Alloys and Compounds, 2021, 889: 161597. DOI: 10.1016/j.jallcom.2021.161597.
|
| [26] |
HUANG G X, LOU P, XU G H, et al. Co3O4 nanosheet decorated nickel foams as advanced lithium host skeletons for dendrite-free lithium metal anode[J]. Journal of Alloys and Compounds, 2020, 817: 152753. DOI: 10.1016/j.jallcom.2019.152753.
|
| [27] |
WANG X, XU L, NIU S Z, et al. Long-cycling, fast-charging lithium metal batteries enabled by nickel-carbon composite nanosheet arrays modified lithium metal anodes[J]. Small, 2025, 21(4): 2404532. DOI: 10.1002/smll.202404532.
|
| [28] |
HUANG K, SONG S P, XUE Z Y, et al. In-situ formation of LiF-rich solid-electrolyte interphases on 3D lithiophilic skeleton for stable lithium metal anode[J]. Energy Storage Materials, 2023, 55: 301-311. DOI: 10.1016/j.ensm.2022.12.003.
|
| [29] |
BAEK K, LEE W G, IM E, et al. Gradient lithium metal infusion in Ag-decorated carbon fibers for high-capacity lithium metal battery anodes[J]. Nano Letters, 2023, 23(18): 8515-8523. DOI: 10.1021/acs.nanolett.3c02229.
|
| [30] |
LUO Z, LIU C, TIAN Y, et al. Dendrite-free lithium metal anode with lithiophilic interphase from hierarchical frameworks by tuned nucleation[J]. Energy Storage Materials, 2020, 27: 124-132. DOI: 10.1016/j.ensm.2020.01.025.
|
| [31] |
ZHOU Y, ZHANG J M, ZHAO K, et al. A novel dual-protection interface based on gallium-lithium alloy enables dendrite-free lithium metal anodes[J]. Energy Storage Materials, 2021, 39: 403-411. DOI: 10.1016/j.ensm.2021.04.042.
|
| [32] |
ZHANG Z L, JIN Y, ZHAO Y, et al. Homogenous lithium plating/stripping regulation by a mass-producible Zn particles modified Li-metal composite anode[J]. Nano Research, 2021, 14(11): 3999-4005. DOI: 10.1007/s12274-021-3326-y.
|
| [33] |
MA J P, ZHANG Z L, ZHANG B, et al. Three-dimensional flower-like NiO on Cu foam as a lithiophilic current collector for high-performance lithium metal batteries[J]. Sustainable Energy & Fuels, 2023, 7(23): 5492-5498. DOI: 10.1039/D3SE01262J.
|
| [34] |
KIM S, KIM D H, CHO M, et al. Long-life lithium-sulfur battery enabled by a multifunctional gallium oxide shield[J]. Chemical Engineering Journal, 2021, 420: 129772. DOI: 10.1016/j.cej.2021. 129772.
|
| [35] |
NI S B, CHEN Q C, LIU J L, et al. New insights into the Li-storage mechanism in α-Ga2O3 anode and the optimized electrode design[J]. Journal of Power Sources, 2019, 433: 126681. DOI: 10.1016/j.jpowsour.2019.05.087.
|
| [36] |
WANG F, GAO J X, LIU Y, et al. An amorphous ZnO and oxygen vacancy modified nitrogen-doped carbon skeleton with lithiophilicity and ionic conductivity for stable lithium metal anodes[J]. Journal of Materials Chemistry A, 2022, 10(34): 17395-17405. DOI: 10.1039/D2TA03706H.
|
| [37] |
YANG W J, ZHANG X H, TAN H T, et al. Gallium-based anodes for alkali metal ion batteries[J]. Journal of Energy Chemistry, 2021, 55: 557-571. DOI: 10.1016/j.jechem.2020.07.035.
|
| [38] |
LI G, XU S W, LI B, et al. Free-standing films based on Ni wires core/foamed NiO shell as hosts for stable lithium anodes[J]. Journal of Power Sources, 2021, 506: 230161. DOI: 10.1016/j.jpowsour.2021.230161.
|