[1] |
JANG K, SONG H J, PARK J B, et al. Magnesium fluoride-engineered UiO-66 artificial protection layers for dendrite-free lithium metal batteries [J]. Energy & Environmental Science, 2024, 17(13): 4622-33.
|
[2] |
TIAN Y, ZENG G, RUTT A, et al. Promises and Challenges of Next-Generation "Beyond Li-ion" Batteries for Electric Vehicles and Grid Decarbonization [J]. Chemical Reviews, 2020, 121(3): 1623-69.
|
[3] |
LI Y, XIAO X, ZHANG L, et al. Co@ CoO core–shell cross-linked framework modified 3D Cu for dendrite-free lithium anode [J]. Chemical Engineering Journal, 2024, 491: 151922.
|
[4] |
YANG T, ZHENG W, XIE Y, et al. Lithiophilic Bimetallic Oxide Interlayer: Enabling High-Rate and Dendrite-Free Lithium Metal Anodes [J]. Journal of Materials Chemistry A, 2025.
|
[5] |
HAO Z M, LU Y, YANG G J, et al. Designing Current Collectors to Stabilize Li Metal Anodes [J]. Advanced Materials, 2025, 37(8).
|
[6] |
GUO G, ZHANG K, ZHU K, et al. Refined Pore Structure Design and Surface Modification of 3D Porous Copper Achieving Highly Stable Dendrite‐Free Lithium‐Metal Anode [J]. Advanced Functional Materials, 2024, 34(38): 2402490.
|
[7] |
WANG X, ZHANG B, CHEN Z, et al. Achieving a higher lithium density in anode surpassing that of pure metallic lithium for high-energy-density batteries [J]. Energy & Environmental Science, 2025.
|
[8] |
WANG K, WANG C, LIU S, et al. Pre-constructing a mortice-tenon joint based-layer to achieve an enhanced SEI on Li metal anode [J]. Energy & Environmental Science, 2025, 18(5): 2610-21.
|
[9] |
YANG T, XU X, CHEN S, et al. A Lithiophilic Donor–Acceptor Polymer Modified Separator for High‐Performance Lithium Metal Batteries [J]. Angewandte Chemie, 2025, 137(9): e202420973.
|
[10] |
REN W, ZHU K, ZHANG W, et al. Dendrite‐free lithium metal battery enabled by dendritic mesoporous silica coated separator [J]. Advanced Functional Materials, 2023, 33(34): 2301586.
|
[11] |
SHI Y, WANG Z, GAO H, et al. A self-supported, three-dimensional porous copper film as a current collector for advanced lithium metal batteries [J]. Journal of Materials Chemistry A, 2019, 7(3): 1092-8.
|
[12] |
HUANG X, WANG M, ZHOU Y, et al. Dual ion regulation enables High-Coulombic-efficiency lithium metal batteries [J]. Nano Energy, 2024, 129: 110031.
|
[13] |
OU Y, HOU W, ZHU D, et al. Molecular design of electrolyte additives for high-voltage fast-charging lithium metal batteries [J]. Energy & Environmental Science, 2025.
|
[14] |
LIU Y, HUANG Y, ZHANG Q, et al. Vertical & lateral ion-flux modulated ion-conductive SEI for high-performance Li-metal batteries [J]. Energy Storage Materials, 2025, 75: 104020.
|
[15] |
WU B, CHEN C, RAIJMAKERS L H, et al. Li-growth and SEI engineering for anode-free Li-metal rechargeable batteries: A review of current advances [J]. Energy Storage Materials, 2023, 57: 508-39.
|
[16] |
LI W, LI M, REN H, et al. Nitride solid-state electrolytes for all-solid-state lithium metal batteries [J]. Energy & Environmental Science, 2025.
|
[17] |
YANG W, LIU Y, SUN X, et al. Solvation‐Tailored PVDF‐Based Solid‐State Electrolyte for High‐Voltage Lithium Metal Batteries [J]. Angewandte Chemie, 2024, 136(18): e202401428.
|
[18] |
WANG Y, SI J, ZHU Y, et al. Stabilizing lithium metal anodes with bismuth oxide-coated 3D copper foams via an in situ bifunctional mediation layer [J]. Journal of Materials Chemistry A, 2025.
|
[19] |
PENG G, WANG G, AKBAR A R, et al. Roll-to-roll fabrication of lithium metal anodes with hierarchical lithiophilic structures and controlled deposition for enhanced stability [J]. Energy Storage Materials, 2024, 66: 103205.
|
[20] |
CHEN G, LI Z, ZHAO T, et al. Stable Lithium Metal Batteries Enabled by Lithiophilic Core‐Shell Nanowires on Copper Foam [J]. Small, 2024, 20(37): 2401465.
|
[21] |
PANG L, LU J, YU Y, et al. Cationic Metal–Organic Framework Arrays to Enable Dendrite-Free Lithium Metal Anodes [J]. ACS Energy Letters, 2024, 9(8): 3746-53.
|
[22] |
FAN Y, HE X, LI H, et al. Lithiophilic Ni3S2 layer decorated nickel foam (Ni3S2@ Ni foam) with fast ion transfer kinetics for long-life lithium metal anodes [J]. Chemical Engineering Journal, 2022, 450: 138384.
|
[23] |
LIU W, MAN J, GUO Y, et al. Lithiophilic Sn layer via pre-electroplating to realize the uniform stripping/plating for dendrite free Li metal anodes [J]. Chemical Engineering Journal, 2023, 475: 146153.
|
[24] |
XU J, HUANG M, ZHANG C, et al. Hierarchical carbon cloth with Co-Nx nanoneedle arrays: enabling highly reversible lithium metal anode via enhanced lithiophilicity and structural confinement [J]. Chemical Engineering Journal, 2025: 162883.
|
[25] |
WANG K, WANG W, DENG J, et al. Highly lithiophilic ZnO nanosheets decorated Ni foam as a stable host for high-performance lithium metal anodes [J]. Journal of Alloys and Compounds, 2021, 889: 161597.
|
[26] |
HUANG G, LOU P, XU G-H, et al. Co3O4 nanosheet decorated nickel foams as advanced lithium host skeletons for dendrite-free lithium metal anode [J]. Journal of Alloys and Compounds, 2020, 817: 152753.
|
[27] |
WANG X, XU L, NIU S, et al. Long‐Cycling, Fast‐Charging Lithium Metal Batteries Enabled by Nickel‐Carbon Composite Nanosheet Arrays Modified Lithium Metal Anodes [J]. Small, 2025, 21(4): 2404532.
|
[28] |
HUANG K, SONG S, XUE Z, et al. In-situ formation of LiF-rich solid-electrolyte interphases on 3D lithiophilic skeleton for stable lithium metal anode [J]. Energy Storage Materials, 2023, 55: 301-11.
|
[29] |
BAEK K, LEE W-G, IM E, et al. Gradient Lithium Metal Infusion in Ag-Decorated Carbon Fibers for High-Capacity Lithium Metal Battery Anodes [J]. Nano Letters, 2023, 23(18): 8515-23.
|
[30] |
LUO Z, LIU C, TIAN Y, et al. Dendrite-free lithium metal anode with lithiophilic interphase from hierarchical frameworks by tuned nucleation [J]. Energy Storage Materials, 2020, 27: 124-32.
|
[31] |
ZHOU Y, ZHANG J, ZHAO K, et al. A novel dual-protection interface based on gallium-lithium alloy enables dendrite-free lithium metal anodes [J]. Energy Storage Materials, 2021, 39: 403-11.
|
[32] |
ZHANG Z, JIN Y, ZHAO Y, et al. Homogenous lithium plating/stripping regulation by a mass-producible Zn particles modified Li-metal composite anode [J]. Nano Research, 2021, 14: 3999-4005.
|
[33] |
MA J, ZHANG Z, ZHANG B, et al. Three-dimensional flower-like NiO on Cu foam as a lithiophilic current collector for high-performance lithium metal batteries [J]. Sustainable Energy & Fuels, 2023, 7(23): 5492-8.
|
[34] |
KIM S, KIM D H, CHO M, et al. Long-life lithium–sulfur battery enabled by a multifunctional gallium oxide shield [J]. Chemical Engineering Journal, 2021, 420: 129772.
|
[35] |
NI S, CHEN Q, LIU J, et al. New insights into the Li-storage mechanism in α-Ga2O3 anode and the optimized electrode design [J]. Journal of Power Sources, 2019, 433: 126681.
|
[36] |
WANG F, GAO J, LIU Y, et al. An amorphous ZnO and oxygen vacancy modified nitrogen-doped carbon skeleton with lithiophilicity and ionic conductivity for stable lithium metal anodes [J]. Journal of Materials Chemistry A, 2022, 10(34): 17395-405.
|
[37] |
YANG W, ZHANG X, TAN H, et al. Gallium-based anodes for alkali metal ion batteries [J]. Journal of Energy Chemistry, 2021, 55: 557-71.
|
[38] |
LI G, XU S, LI B, et al. Free-standing films based on Ni wires core/foamed NiO shell as hosts for stable lithium anodes [J]. Journal of Power Sources, 2021, 506: 230161.
|