[1] DUNN Bruce,KAMATH Haresh,TARASCON Jean-Marie. Electrical energy storage for the grid:A battery of choices[J]. Science,2011,334(6058):928-935.
[2] LIU J,ZHANG J G,YANG Z G,et al. Materials science and materials chemistry for large scale electrochemical. energy storage:From transportation to electrical grid[J]. Advanced Functional Materials,2013,23(8):929-946.
[3] BONACCORSO F,COLOMBO L,YU G H,et al. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage[J]. Science,2015,347(6217):doi: 10.1126/ science. 1246501.
[4] DAI Liming. Functionalization of graphene for efficient energy conversion and storage[J]. Accounts of Chemical Research,2012,46(1):31-42.
[5] ZHU Yanwu,MURALI Shanthi,STOLLER Meryl D,et al. Carbon-based supercapacitors produced by activation of graphene[J]. Science,2011,332(6037):1537-1541.
[6] CHEN K F,SONG S Y,LIU F,et al. Structural. design of graphene for use in electrochemical energy storage devices[J]. Chemical Society Reviews,2015,44(17):6230-6257.
[7] EL-KADY M F,STRONG V,DUBIN S,et al. Laser scribing of high-performance and flexible graphene-based electrochemical capacitors[J]. Science,2012,335(6074):1326-1330.
[8] WINTER M,BRODD R J. What are batteries, fuel cells, and supercapacitors?[J]. Chemical Reviews,2004,104(10):4245-4269.
[9] ZHANG L L,ZHAO X S. Carbon-based materials as supercapacitor electrodes[J]. Chemical Society Reviews,2009,38(9):2520-2531.
[10] ZHAI Yunpu,DOU Yuqian,ZHAO Dongyuan,et al. Carbon materials for chemical capacitive energy storage[J]. Advanced Materials,2011,23(42):4828-4850.
[11] XIA Jilin,CHEN Fang,LI Jinghong,et al. Measurement of the quantum capacitance of graphene[J]. Nature Nanotechnology,2009,4(8):505-509.
[12] LI Z,LIU Z,SUN H Y,et al. Superstructured assembly of nanocarbons:Fullerenes, nanotubes, and graphene[J]. Chemical Reviews,2015,115(15):7046-7117.
[13] YIN Shengyan,NIU Zhiqiang,CHEN Xiaodong. Assembly of graphene sheets into 3D macroscopic structures[J]. Small,2012,8(16):2458-2463.
[14] LIU Chenguang,YU Zhenning,NEFF David,et al. Graphene-based supercapacitor with an ultrahigh energy density[J]. Nano Letters,2010,10(12):4863-4868.
[15] GOGOTSI Y,SIMON P. True performance metrics in electrochemical energy storage[J]. Science,2011,334(6058):917-918.
[16] SIMON P,GOGOTSI Y. Capacitive energy storage in nanostructured carbon-electrolyte systems[J]. Accounts of Chemical Research,2013,46(5):1094-1103.
[17] GHIDIU M,LUKATSKAYA M R,ZHAO M Q,et al. Conductive two-dimensional. titanium carbide 'clay' with high volumetric capacitance[J]. Nature,2014,516(7529):78-81.
[18] WANG Q,YAN J,FAN Z J. Carbon materials for high volumetric performance supercapacitors:Design, progress, challenges and opportunities[J]. Energy & Environmental Science,2016,9(3):729-762.
[19] ACERCE M,VOIRY D,CHHOWALLA M. Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials[J]. Nature Nanotechnology,2015,10(4):313-318.
[20] TAO Y,XIE X,LV W,et al. Towards ultrahigh volumetric capacitance:Graphene derived highly dense but porous carbons for supercapacitors[J]. Scientific Reports,2013,3:2975.
[21] ZHANG C,LIU D H,LV W,et al. A high-density graphene-sulfur assembly:A promising cathode for compact Li-S batteries[J]. Nanoscale,2015,7(13):5592-5597.
[22] XU Yue,TAO Ying,ZHENG Xiaoyu,et al. A metal-free supercapacitor electrode material. with a record high volumetric capacitance over 800 F·cm−3[J]. Advanced Materials,2015,27(48):8082-8087.
[23] LI Huan,TAO Ying,ZHENG Xiaoyu,et al. Ultra-thick graphene bulk supercapacitor electrodes for compact energy storage[J]. Energy & Environmental Science,2016,doi:10.1039/C6EE00941G.
[24] ZHANG Jun,LV Wei,TAO Ying,et al. Ultrafast high-volumetric sodium storage of folded-graphene electrodes through surface-induced redox reactions[J]. Energy Storage Materials,2015,1:112-118.
[25] YANG X,CHENG C,WANG Y,et al. Liquid-mediated dense integration of graphene materials for compact capacitive energy storage[J]. Science,2013,341(6145):534-537.
[26] WANG D W,LI F,LIU M,et al. 3D Aperiodic hierarchical. porous graphitic carbon material for high-rate electrochemical. capacitive energy storage[J]. Angewandte Chemie-International. Edition,2008,47(9):373-376.
[27] ZHANG K,ZHANG L L,ZHAO X S,et al. Graphene/polyaniline nanoriber composites as supercapacitor electrodes[J]. Chemistry of Materials,2010,22(4):1392-1401.
[28] JEONG H M,LEE J W,SHIN W H,et al. Nitrogen-doped graphene for high-performance ultracapacitors and the importance of nitrogen-doped sites at basal planes[J]. Nano Letters,2011,11(6):2472-2477.
[29] FANG Yan,LUO Bin,JIA Yuying,et al. Renewing functionalized graphene as electrodes for high-performance supercapacitors[J]. Advanced Materials,2012,24(47):6348-6355.
[30] WANG Yufei,YANG Xiaowei,QIU Ling,et al. Revisiting the capacitance of polyaniline by using graphene hydrogel films as a substrate:The importance of nano-architecturing[J]. Energy & Environmental Science,2013,6(2):477-481.
[31] LU Q,CHEN J G,XIAO J Q. Nanostructured electrodes for high-performance pseudocapacitors[J]. Angewandte Chemie- International Edition,2013,52(7):1882-1889.
[32] LIN T,CHEN I W,LIU F,et al. Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage[J]. Science,2015,350(6267):1508-1513.
[33] XU Fei,TANG Zhiwei,HUANG Siqi,et al. Facile synthesis of ultrahigh-surface-area hollow carbon nanospheres for enhanced adsorption and energy storage[J]. Nature Communications,2015,6:7221.
[34] MURALI Shanthi,QUARLES Neil,ZHANG Li Li,et al. Volumetric capacitance of compressed activated microwave-expanded graphite oxide (a-MEGO) electrodes[J]. Nano Energy,2013,2(5):764-768.
[35] MOUSSA M,ZHAO Z H,EL-KADY M F,et al. Free-standing composite hydrogel films for superior volumetric capacitance[J]. Journal of Materials Chemistry A,2015,3(30):15668-15674.
[36] LI H,TAO Y,ZHENG X Y,et al. Compressed porous graphene particles for use as supercapacitor electrodes with excellent volumetric performance[J]. Nanoscale,2015,7(44):18459-18463.
[37] HONG J Y,BAK B M,WIE J J,et al. Reversibly compressible, highly elastic, and durable graphene aerogels for energy storage devices under limiting conditions[J]. Advanced Functional Materials,2015,25(7):1053-1062.
[38] XU Y X,LIN Z Y,ZHONG X,et al. Holey graphene frameworks for highly efficient capacitive energy storage[J]. Nature Communications,2014,5:4554.
[39] WU Z S,PARVEZ K,FENG X,et al. Graphene-based in-plane micro-supercapacitors with high power and energy densities[J]. Nature Communications,2013,4:2487.
[40] CHMIOLA John,LARGEOT Celine,TABERNA Pierre-Louis,et al. Monolithic carbide-derived carbon films for micro-supercapacitors[J]. Science,2010,328(5977):480-483.
[41] HUANG P,LETHIEN C,PINAUD S,et al. On-chip and freestanding elastic carbon films for micro-supercapacitors[J]. Science,2016,351(6274):691-695.
[42] WU Zhongshuai,PARVEZ Khaled,WINTER Andreas,et al. Layer-by-layer assembled heteroatom-doped graphene films with ultrahigh volumetric capacitance and rate capability for micro-supercapacitors[J]. Advanced Materials,2014,26(26):4552-4558.
[43] ZHANG C,LV W,TAO Y,et al. Towards superior volumetric performance:Design and preparation of novel carbon materials for energy storage[J]. Energy & Environmental Science,2015,8(5):1390-1403.
[44] YOON Yeoheung,LEE Keunsik,KWON Soongeun,et al. Vertical alignments of graphene sheets spatially and densely piled for fast ion diffusion in compact supercapacitors [J]. ACS Nano,2014,8(5):4580-4590.
[45] YAN Jun,WANG Qian,WEI Tong,et al. Template-assisted low temperature synthesis of functionalized graphene for ultrahigh volumetric performance supercapacitors[J]. ACS Nano,2014,8(5):4720-4729.
[46] LIU D Q,JIA Z,WANG D L. A novel route to fabricate high-density graphene assemblies for high-volumetric-performance supercapa citors:Effect of cation pre-intercalation[J]. RSC Advances,2016,6(43):36971-36977.
[47] LIU D Q,JIA Z,ZHU J X,et al. A regular, compact but microporous packing structure:High-density graphene assemblies for high-volumetric- performance supercapacitors[J]. Journal of Materials Chemistry A,2015,3(24):12653-12662.
[48] JIANG Lili,SHENG Lizhi,LONG Conglai,et al. Densely packed graphene nanomesh-carbon nanotube hybrid film for ultra-high volumetric performance supercapacitors[J]. Nano Energy,2015,11:471-480.
[49] JIANG L L,SHENG L Z,LONG C L,et al. Functional pillared graphene frameworks for ultrahigh volumetric performance supercapacitors[J]. Advanced Energy Materials,2015,5(15):doi: 10.1002/aenm.201500771.
[50] WANG Q,YAN J,FAN Z J. Nitrogen-doped sandwich-like porous carbon nanosheets for high volumetric performance supercapacitors[J]. Electrochimica Acta,2014,146:548-555.
[51] WANG J,DING B,XU Y L,et al. Crumpled nitrogen-doped graphene for supercapacitors with high gravimetric and volumetric performances[J]. ACS Applied Materials & Interfaces,2015,7(40):22284-22291. |