储能科学与技术 ›› 2016, Vol. 5 ›› Issue (6): 861-868.doi: 10.12028/j.issn.2095-4239.2016.0052

• 研究开发 • 上一篇    下一篇

石墨烯-碳纳米管杂化物在超级电容器中的应用

谢  青1,2,田佳瑞1,何宫樊2,和冲冲2,康  辉2,魏小波2,孙久铭2,#br# 骞伟中1,张  强1,魏  飞1   

  1. 1清华大学化工系,北京 100084;2北京北方国能科技有限公司,北京 100084
  • 收稿日期:2016-07-20 修回日期:2016-08-31 出版日期:2016-11-01 发布日期:2016-11-01
  • 通讯作者: 骞伟中,教授,博士生导师,研究方向为碳纳米材料、超级电容储能与新型煤化工,E-mail:qianwz@tsinghua.edu.cn;魏飞,教授,博士生导师,研究方向为多相流态化、碳纳米材料及储能、工业催化,E-mail:wf-dce@tsinghua.edu.cn。
  • 作者简介:谢青(1983—),女,博士,研究方向为电容用碳纳米材料,xie_qing1121@126.com;
  • 基金资助:
    国家重点研发计划(2016YFA0200102)和北京市科技计划项目(Z161100002116012)。

Graphene/single-walled carbon nanotube hybrids and applications in supercapacitors

XIE Qing1,2, TIAN Jiarui1, HE Gongfan2, HE Chongchong2, KANG Hui2, WEI Xiaobo2, SUN Jiuming2,#br# QIAN Weizhong1, ZHANG Qiang1, WEI Fei1   

  1. 1Department of Chemical Engineering, Tsinghua University; 2Beijing BeifangGuoneng Technology Co., Ltd.,
    Beijing 100084, China
  • Received:2016-07-20 Revised:2016-08-31 Online:2016-11-01 Published:2016-11-01

摘要: 双电层超级电容器作为新型清洁能源储能器件,具有安全、高功率密度和长寿命的优点。目前发展新电极材料与提高工作电压窗口是提高电容器能量密度的重要方向。本工作利用化学气相沉积法制备了石墨烯-碳纳米管杂化物,具有导电性优良、孔径可调、化学稳定性高、比表面积大(1200~1800 m2/g)的优点,同时避免了单独石墨烯或者碳纳米管电极制备过程中堆叠的缺点。并且系统研究了石墨烯-碳纳米管杂化物在水系、有机电解液和离子液体中的电容性质,考察了以活性炭为主体电极材料,石墨烯-碳纳米管为添加剂的软包电容器的性质,为开发高能量密度和高功率密度的超级电容器提供了基础。

关键词: 石墨烯, 碳纳米管, 杂化物, 超级电容器

Abstract: Supercapacitor, based on electric double-layer capacitance effect, had advantages of high power density and long cycle life. Current focuses to develop new electrode material and high voltage system in order toincrease energy density of device. We reported the preparation of graphene/ single-walled carbon nanotube hybrids (GNH) by chemical vapor deposition method. The materials had huge specific surface area (1200—1800 m2/g), high purity, good dispersion and high chemical stability. It, as the electrode, exhibited high capacitance performance in electrolytes such as KOH at 1 V, Et4NBF4/PC at 2.7 V and ionic liquids at 4 V. Soft-pack capacitors with Et4NBF4/PC electrolyte were also examined by using activated carbon as main electrode and GNHs as conductive additives. All results suggested GNH was an excellent electrode material choice, paving the way for the development of capacitor with high energy density and high power density.

Key words: graphene, carbon nanotube, hybrids, supercapacitor