储能科学与技术 ›› 2017, Vol. 6 ›› Issue (1): 43-51.doi: 10.12028/j.issn.2095-4239.2016.0011
谢潇怡1,王 莉2, 何向明1,2,张明轩1,李建军1
收稿日期:
2016-04-07
修回日期:
2016-06-12
出版日期:
2017-01-03
发布日期:
2017-01-03
通讯作者:
何向明,副研究员,主要研究方向为锂离子电池及其相关材料,E-mail:hexm@mail. tsinghua.edu.cn。
作者简介:
谢潇怡(1982—),女,博士后,主要研究方向为锂离子电池,E-mail:xiexiaoyi0328@126.com;
基金资助:
XIE Xiaoyi1, WANG Li2, HE Xiangming1,2, ZHANG Mingxuan1, LI Jianjun1
Received:
2016-04-07
Revised:
2016-06-12
Online:
2017-01-03
Published:
2017-01-03
摘要: 影响动力电池安全性能的因素贯穿了一个动力电池从电芯选材到使用终结的生命周期始终,因此原因复杂多样层次丰富。本文通过回顾从电芯材料本身、电芯的制造过程、电池集成中关于BMS(电池管理系统)和安全性方面的设计,到使用工况中影响锂离子电池安全性的因素,分析了电芯组成材料的晶体结构、电极电势、性状,电芯制造过程中自动化程度、SEI膜生长条件,电堆的集成设计以及电池在使用过程中面临的过度充放电、恶劣温度、意外工况等滥用方式对锂离子电池安全性能的影响。提出了锂离子电池在各个环节下消减影响安全性不利因素的方法,得出了需要重视电池集成和对电池发生热失控进行预案设计的结论。
谢潇怡1,王 莉2, 何向明1,2,张明轩1,李建军1. 锂离子动力电池安全性问题影响因素[J]. 储能科学与技术, 2017, 6(1): 43-51.
XIE Xiaoyi1, WANG Li2, HE Xiangming1,2, ZHANG Mingxuan1, LI Jianjun1 . The safety influencing factors of lithium batteries[J]. Energy Storage Science and Technology, 2017, 6(1): 43-51.
[1] FELLNER J P, LOEBER G J, SANDHU S S. Testing of lithium-ion 18650 cells and characterizing/predicting cell performance[J]. Journal of Power Sources, 1999, 81: 867-871. [2] KIDA H, KINOSHITA A, YANAGIDA K, et al. A study on the cycle performance of lithium secondary batteries using lithium nickel-cobalt composite oxide and graphite/coke hybrid carbon[J]. Journal of Electrochimica Acta, 2002, 47: 1691-1696. [3] BITSCHE O, GUTMANN G. Systems for hybrid cars[J]. Journal of Power Sources, 2004, 127: 8-15. [4] CHENG K W, DIVAKAR B P, WU H J, et al. Battery-management system (BMS) and SOC development for electrical vehicles[J]. Transactions on Vehicular Technology, 2011, 60: 76-88. [5] WANG Q, SUN J, CHU G. Lithium ion battery fire and explosion[J]. Fire Safety Science, 2005, 8: 375-382. [6] MATSUMURA H, ITOH S, ANDO K. Basic study on thermal runaway propagation through lithium ion cells[J]. Journal of Passenger Cars-Mechanical Systems, 2015, 8: 546-555. [7] MENDOZA H O S, ISHIKAWA H,NISHIKAWA Y, et al. Cathode material comparison of thermal runaway behavior of Li-ion cells at different state of charges including over charge[J]. Journal of Power Sources, 2015, 280: 499-504. [8] FENG X, SUN J, OUYANG M, et al. Characterization of penetration induced thermal runaway propagation process within a large format lithium ion battery module[J]. Journal of Power Sources, 2015, 275: 261-273. [9] YE Y, SHI Y, CAI N, et al. Electro-thermal modeling and experimental validation for lithium ion battery[J]. Journal of Power Sources, 2012, 199: 227-238. [10] 吴凯, 张耀, 曾毓群, 等. 锂离子电池安全性能研究[J]. 化学进展, 2011, 23: 401-409. WU K, ZHANG Y, ZENG Y Q, et al. Safety performance of lithium-ion battery[J]. Progress in Chemistry, 2011, 23: 401-409. [11] 刘伶, 张乃庆, 孙克宁, 等. 锂离子电池安全性能影响因素分析[J]. 稀有金属材料与工程, 2010, 39: 936-940. LIU L, ZHANG N Q, SUN K N, et al. Analyzation of Li-ion battery safey factors[J]. Rare Metal Materials and Engineering, 2010, 39: 936-940. [12] 陈玉红, 唐致远, 卢星河. 锂离子电池爆炸机理研究[J]. 化学进展, 2006, 18: 823-831. CHEN Y H, TANG Z Y, LU X H. Research of explosion mechanism of lithium-ion battery[J]. Progress in Chemistry, 2006, 18: 823-831. [13] PESARAN A A. Battery thermal management in EVs and HEVs:Issues and solutions[C]//Advanced Automotive Battery Conference. USA: Las Vegas, 2001. [14] GOODENOUGH J B, KIM Y. Challenges for rechargeable batteries[J]. Journal of Power Sources, 2011, 196: 6688-6694. [15] GOODENOUGH J B, KIM Y. Challenges for rechargeable Li batteries[J]. Chemistry of Materials, 2010, 22: 587-603. [16] IDEMOTO Y, MATSUI T. Thermodynamic stability, crystal, structure and cathodic performance of Lix(Mn1/3Co1/3Ni1/3)O2 depend on the synthetic process and Li content[J]. Solid State Ionics, 2008, 179: 625-635. [17] YING X, HAI T Y, TING F Y, et al. Understanding the thermal and mechanical stabilities of olivine-type LiMPO4 (M=Fe, Mn) as cathode materials for rechargeable lithium batteries from first-principles[J]. Applied Materials and Interfaces, 2014: 1-32. [18] KOMABA S,CROGUENNEC L,TOURNADRE F, et al. Thermal behavior of the layered oxide Li2/3Co2/3Mn1/3O2 obtained by ion exchange from the P2-type Na2/3Co2/3Mn1/3O2 phase[J]. Journal of Physical Chemistry C, 2013, 117: 3264-3271. [19] BAK S M, HU E, ZHOU Y, et al. Structural changes and thermal stability of charged LiNixMnyCozO2 cathode materials studied by combined in situ time-resolved XRD and mass spectroscopy[J]. Applied Materials and Interfaces, 2014, 6: 2594-2601. [20] BELHAROUAK I, LU W, VISSERS D, et al. Safety characteristics of Li(Ni0.8Co0.15Al0.05)O2 and Li(Ni1/3Co1/3Mn1/3)O2[J]. Electrochemistry Communications, 2006, 8: 329-335. [21] SEKI S, WATANABE M. Highly safe lithium secondary batteries using solid electrolytes[J]. Membrane, 2013, 38: 108-113. [22] LIU K, XU R J. Safety and high performance in lithium battery separator[J]. Value Engineering, 2012: 313-314. [23] WU H, ZHUO D, KONG D, et al. Improving battery safety by early detection of internal shorting with a bifunctional separator[J]. Nature Communications, 2014, 5: doi: 1.1038/ncomms619. [24] MIN K, PARK J H. Inorganic thin layer coated porous separator with high thermal stability for safety reinforced Li-ion battery[J]. Journal of Power Sources, 2012, 212: 22-27. [25] LUO X,PAN W, LIU H, et al. Glass fiber fabric mat as the separator for lithium-ion battery with high safety performance[J]. Ionics, 2015: 1-5. [26] CHAN J K, JAE W K, KIM J B. Key factors in separator for safety of cylindrical lithium ion battery[J]. Electrochemical Society, 2006: 300-330. [27] JAIN A, HAUTIER G, ONG S P,et al. Relating voltage and thermal safety in Li-ion battery cathodes:A high-throughput computational study[J]. Physical Chemistry Chemical Physics, 2015, 17: 5942-5953. [28] WHITTINGHAM M S. Lithium batteries and cathode materials[J]. Chem. Rev., 2004, 104: 4271-4302. [29] SHAJU K M, RAO G V, CHOWDARI B V. Performance of layered Li(NiCoMn)O as cathode for Li-ion batteries[J]. Electrochim. Act., 2002, 48: 145-151. [30] BELHAROUAK I,SUN Y K, LIU J, et al. Li(Ni1/3Co1/3Mn1/3)O2 as a suitable cathode for high power applications[J]. Journal of Power Sources, 2003, 123: 247-252. [31] MACNEIL D D,LU Z,DAHN J R. Structure and electrochemistry of Li[NixCo1−2xMnx]O2 (0£x£1/2)[J]. J. Electrochem. Soc., 2002, 149: A1332-A1336. [32] SONG L, XIAO Z, ZHOU Y. Thermo-electrochemical study on LiMn2O4 lithium-ion cells during charge-discharge process[J]. Electrochimica Acta, 2013, 114: 611-616. [33] GOLUBKOV A W,FUCHS D, WAGNER J, et al. Thermal-runaway experiments on consumer Li-ion batteries with metal-oxide and olivin-type cathodes[J]. RSC Adv., 2014, 4: 3633-3642. [34] ROTH E P, NAGASUBRAMANIAN G. Thermal stability of electrodes in lithium-ion cells[J]. Journal of the Electrochemical Society, 2000. [35] WANG H, TANG A, HUANG K. Thermal behavior investigation of LiNi1/3Co1/3Mn1/3O2-based Li-ion battery under overcharged test[J]. Chinese J. Chem., 2011, 29: 27-32. [36] LUO W, ZHOU F, ZHAO X, et al. Synthesis, characterization, and thermal stability of LiNi1/3Mn1/3Co1/3−zMgzO2,LiNi1/3−zMn1/3 Co1/3 MgzO2, and LiNi1/3Mn1/3−zCo1/3MgzO2[J]. Chemistry of Materials, 2010, 22: 1164-1172. [37] LUO W, LI X, DAHN J R. Synthesis, characterization, and thermal stability of Li[Ni1/3Mn1/3Co1/3−z(MnMg)z/2]O2[J]. Chemistry of Materials, 2010, 22: 5065-5073. [38] RÖDER P, BABA N, WIEMHÖFER H D A. Detailed thermal study of a Li[Ni0.33Co0.33Mn0.33]O2/LiMn2O4-based lithium ion cell by accelerating rate and differential scanning calorimetry[J]. Journal of Power Sources, 2014, 248: 978-987. [39] OHZUKU T, UEDA A, YAMAMOTO N. Zero-strain insertion material of Li[Lil/3Ti2/3]O4 for rechargeable lithium cells[J]. J. Electrochem. Soc., 1995, 142: 1431-1435. [40] GOODENOUGH J B, HAN J T. Niobium oxide compositions and methods for using same: US 8647773[P]. 2014-02-11. [41] ARBIZZANI C, GABRIELLI G, MASTRAGOSTINO M. Thermal stability and flammability of electrolytes for lithium-ion batteries[J]. Journal of Power Sources, 2011, 196: 4801-4805. [42] ZENG Z, WU B, XIAO L, et al. Safer lithium ion batteries based on nonflammable electrolyte[J]. Journal of Power Sources, 2015, 279: 6-12. [43] SMART M C, KRAUSE F C, HWANG C, et al. The evaluation of triphenyl phosphate as a flame retardant additive to improve the safety of lithium-ion battery electrolytes[J]. ECS Transactions, 2011, 35: 1-11. [44] 胡广侠. 锂离子电池充放电过程的研究[D]. 上海: 中国科学院上海微系统与信息技术研究所, 2002. HU G X. Study on the charge/discharge characteristic of lithium-ion batteries[D]. Shanghai: Shanghai Institute of Microsystem and Information Technology, CAS, 2002. [45] ARORA P, WHITE R E, DOYLE M. Capacity fade mechanisms and side reactions in lithium-ion batteries[J]. Journal of the Electrochemical Society, 1998, 145: 3647-3667. [46] GU W, SUN Z, WEI X, et al. Capacity fading model of lithium-ion battery cycle life based on the kinetics of side reactions for electric vehicle applications[J]. Electrochimica Acta, 2014, 133: 107-116. [47] VERMA P, MAIRE P, NOVÁK P. A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries[J]. Electrochimica Acta, 2010, 55: 6332-6341. [48] TANG H M. Side reactions in lithium-ion batteries[D]. Berkeley: University of California, 2012. [49] 秦银平, 庄全超, 史月丽, 等. 锂离子电池电极界面特性研究方法[J]. 化学进展, 2011, 23: 390-399. QIN Y P, ZHUANG Q C, SHI Y L, et al. Methods on investigating properties of electrode/electrolyte interfaces in lithium batteries[J]. Progress in Chemistry, 2011, 23: 390-399. [50] CHET S P E. Integrating battery energy storage with a BMS for reliability, efficiency, and safety in vehicles[C]//IEEE, 2012. Transportation Electrification Conference and Expo. USA: Washington D.C, 2012: 1-3 [51] QIANG J X, YANG L, AO G, et al. Battery management system for electric vehicle application[C]//2006 IEEE International Conference on Vehicular Electronics and Safety. 2006: 134-138. [52] HAUSER A, KUHN R. 12-cell balancing, battery state estimation, and safety aspects of battery management systems for electric vehicles[J]. Advances in Battery Technologies for Electric Vehicles, 2015: 283-326. [53] CHENG K W, DIVAKAR B P, WU H,et al. Battery-management system (BMS) and SOC development for electrical vehicles [C]//IEEE Transactions on Vehicular Technology 2011. 2011, 60: 76-88. [54] ANDRE D, APPEL C, SOCZKA G T, et al. Advanced mathematical methods of SOC and SOH estimation for lithium-ion batteries[J]. Journal of Power Sources, 2013, 224: 20-27. [55] MEHTA V H, HERN W A, KALAYJIAN N R. Cell thermal runaway propagation resistant battery pack:US 2010/0075213 A1[P]. 2010-03-25. [56] MEHTA V H, PRLLUTSKYS A. Cell thermal runaway propagation resistance using dual intumescent material layers: US 2010/0086844 A1[P]. 2010-05-08. [57] MEHTA V H, ALEX P, HERMANN W A. Cell thermal runaway propagation resistance using an internal layer of intumescent material: US 2010/0075221 A1[P]. 2010-03-25. [58] HERMANN W A, MEHTA V H,PRILUTSKY A. Method and apparatus for maintaining cell wall integrity during thermal runaway using an outer layer of intumescent material: US 2010/0136385 A1[P]. 2010-06-03. [59] HERMANN W A, SCOTT I K,BERDICHEVSKY E M, et al. Increased resistance to thermal runaway through differential heat transfer: US 2010/0151308 A1[P]. 2010-06-17. [60] HERMANN W A, BECK D G. Cell separator for minimizing thermal runaway propagation within a battery pack: US 2010/0136396 A1[P]. 2010-06-03. [61] HERMANN W A. Rigid cell separator for minimizing thermal runaway propagation within a battery pack: US 2013/0078494 A1[P]. 2013-03-28. [62] LEPORT F, KOHN S I, KING O A, et al.Battery cap assembly with high efficiency vent: US 2013/0059181 A1[P]. 2013-03-07. [63] HERMANN W A, SCOTT I K,KISHIYAMA C H, et al. Integrated battery pressure relief and thermal isolation system: US 2012/0270080 A1[P]. 2012-10-25. [64] HERMANN W A, KOHN S I. Multi-wall battery for maintaining cell wall integrity during thermal runaway: US 2010/0136424 A1[P]. 2010-06-03. [65] HERMANN W A, SCOTT I K, MEHTA V H, et al. Thermal barriers sructure for containing thermal runaway propagation within a battery pack: US 2010/0136404 A1[P]. 2010-06-03. [66] HERRON N H, KOHN S I, HERMANN W A, et al. Battery pack venting system: US 2012/0231306 A1[P]. 2012-09-13. [67] MARDALL J, HERRON N H, GRACE D,et al. Battery pack directed venting system: US 2012/0237803 A1[P]. 2012-09-20. [68] HERMANN W A. Liguid cooling manifold with multi-function thermal interface: US 2010/0104938 A1[P]. 2010-04-29. [69] PRILUTSKY A, HERMANN W A. Active thermal runaway mitigation systerm for use within a battery pack: US 2010/0136391 A1[P]. 2010-06-03. [70] HERMANN W A, PRILUTSKY A, MEHTA V H. Battery pack enclosure with runaway release system: US 2010/0273034 A1[P]. 2010-10-28. [71] HERMANN W A, PRILUTSKY A, MEHTA V H. Battery pack enclosure with controlled thermal runaway release system: US 2012/0308858 A1[P]. 2012-12-06. [72] HERMANN W A, PRILUTSKY A, MEHTA V H. Battery pack enclosure with controlled thermal runaway release system: US 2012/0308859 A1[P]. 2012-12-06. [73] HERMANN W A, CLARKE A P. Battey pack gas exhaust system: US 2011/0174556 A1[P]. 2011-07-21. [74] HERMANN W A, ALTO P. Hazard mitigatin within a battery pack using metal-air cells: US 2012/0040212 A1[P]. 2012-02-16. [75] HERMANN W A. Hazard mitigation through gas flow communication between battery packs: US 2012/0040255 A1[P]. 2012-02-16. [76] RAWLINSON P D. Vehicle battery pack ballistic shield: US 2012/0312615 A1[P]. 2012-11-13. [77] RAWLINSON P D, Nicholas H H,Edwards B P,et al. Vehicle battery pack thermal barrier: US 2013/0153317 A1[P]. 2013-06-20. [78] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 电动汽车用锂离子动力蓄电池包和系统测试规程第三部分:安全性要求与测试方法[S]. GB/T 31467.3-2015. 北京: 中国标准出版社, 2015: 11. General Administration of quality supervision, inspection and Quarantine of People's Republic of China Standardization Administration of the People's Republic of China. Lithium-ion traction battery pack and system for electric vehicles—Part 3: Safety requirements and test methods—Part 3: Safety[S]. GB/T 31467.3- 2015. GB/T 31467.3-2015. Beijing: Standards Press of China, 2015: 11. [79] HATCHARD T D, TRUSSLER S, DAHN J R. Building a “smart nail” for penetration tests on Li-ion cells[J]. Journal of Power Sources, 2014, 247: 821-823. [80] 胡杨, 李艳, 连芳, 等. 锂离子电池耐过充性的研究进展[J]. 电池,2005,35: 462-464. HU Y, LI Y, LIAN F, et al. Research progress in overcharge resisitance performance of Li-ion batteries[J]. Battery Bimonthly, 2005, 35: 462-464. [81] 艾新平, 杨汉西, 曹余良, 等. 第二届中国储能与动力电池及其关键材料学术研讨与技术交流会论文集[C]. 北京: 中国仪器仪表协会, 2007: 92. AI X P, YANG H X, CAO Y L, et al. Paper compilation on the second China energy storage and power battery and its key materials for academic research and technology exchange[C]. Beijing: China Instrument and meter Association, 2007: 92. [82] 王浩, 杨聚平, 王莉, 等. 锂离子电池的安全性问题[J]. 新材料产业, 2012, 9: 88-94. WANG H, YANG J P, WANG L, et al. The safety issues of lithium battery[J]. Advanced Material Industry, 2012, 9: 88-94. [83] 王浩, 李建军, 王莉, 等. 绝热加速量热仪在锂离子电池安全性研究方面的应用[J]. 新材料产业, 2013, 1: 53-58. WANG H, LI J J, WANG L, et al. The application of ARC in the research of lithum battery safety[J]. Advanced Material Industry, 2013, 1: 53-58. [84] WANG Q, PING P, ZHAO X, et al. Thermal runaway caused fire and explosion of lithium ion battery[J]. Journal of Power Sources, 2012, 208: 210-224. [85] WANG Y W,SHU C M. Rechargeable batteries[M]. Berlin: Springer International Publishing, 2015: 419-454. [86] ANDREY W G, SEBASTIAN S, RENE P, et al. Thermal runaway of commercial 18650 Li-ion batteries with LFP and NCA cathodes-impact of state of charge and overcharge[J]. J. Royal Society of Chemistry, 2015, 2: 13-29. [87] FENG X, HE X, OUYANG M, et al. Thermal runaway propagation model for designing a safer battery pack with 25A·h LiNixCoyMnzO2 large format lithium ion battery[J]. Applied Energy, 2015, 154: 74-91. |
[1] | 李海涛, 孔令丽, 张欣, 余传军, 王纪威, 徐琳. N/P设计对高镍NCM/Gr电芯性能的影响[J]. 储能科学与技术, 2022, 11(7): 2040-2045. |
[2] | 刘显茜, 孙安梁, 田川. 基于仿生翅脉流道冷板的锂离子电池组液冷散热[J]. 储能科学与技术, 2022, 11(7): 2266-2273. |
[3] | 陈龙, 夏权, 任羿, 曹高萍, 邱景义, 张浩. 多物理场耦合下锂离子电池组可靠性研究现状与展望[J]. 储能科学与技术, 2022, 11(7): 2316-2323. |
[4] | 易顺民, 谢林柏, 彭力. 基于VF-DW-DFN的锂离子电池剩余寿命预测[J]. 储能科学与技术, 2022, 11(7): 2305-2315. |
[5] | 祝庆伟, 俞小莉, 吴启超, 徐一丹, 陈芬放, 黄瑞. 高能量密度锂离子电池老化半经验模型[J]. 储能科学与技术, 2022, 11(7): 2324-2331. |
[6] | 王宇作, 王瑨, 卢颖莉, 阮殿波. 孔结构对软碳负极储锂性能的影响[J]. 储能科学与技术, 2022, 11(7): 2023-2029. |
[7] | 孔为, 金劲涛, 陆西坡, 孙洋. 对称蛇形流道锂离子电池冷却性能[J]. 储能科学与技术, 2022, 11(7): 2258-2265. |
[8] | 霍思达, 薛文东, 李新丽, 李勇. 基于CiteSpace知识图谱的锂电池复合电解质可视化分析[J]. 储能科学与技术, 2022, 11(7): 2103-2113. |
[9] | 邓健想, 赵金良, 黄成德. 高能量锂离子电池硅基负极黏结剂研究进展[J]. 储能科学与技术, 2022, 11(7): 2092-2102. |
[10] | 欧宇, 侯文会, 刘凯. 锂离子电池中的智能安全电解液研究进展[J]. 储能科学与技术, 2022, 11(6): 1772-1787. |
[11] | 韩俊伟, 肖菁, 陶莹, 孔德斌, 吕伟, 杨全红. 致密储能:基于石墨烯的方法学和应用实例[J]. 储能科学与技术, 2022, 11(6): 1865-1873. |
[12] | 辛耀达, 李娜, 杨乐, 宋维力, 孙磊, 陈浩森, 方岱宁. 锂离子电池植入传感技术[J]. 储能科学与技术, 2022, 11(6): 1834-1846. |
[13] | 燕乔一, 吴锋, 陈人杰, 李丽. 锂离子电池负极石墨回收处理及资源循环[J]. 储能科学与技术, 2022, 11(6): 1760-1771. |
[14] | 沈秀, 曾月劲, 李睿洋, 李佳霖, 李伟, 张鹏, 赵金保. γ射线辐照交联原位固态化阻燃锂离子电池[J]. 储能科学与技术, 2022, 11(6): 1816-1821. |
[15] | 常泽宇, 张之琦, 张晓东, 李丽, 郁亚娟. 基于数据驱动的动力电池健康状态评估平台[J]. 储能科学与技术, 2022, 11(6): 1847-1853. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||