储能科学与技术 ›› 2017, Vol. 6 ›› Issue (1): 52-68.doi: 10.12028/j.issn.2095-4239.2016.0071
刘冠伟1,2,张亦弛1,2,慈 松1,2,余占清1,2,曾 嵘1,2
收稿日期:
2016-09-09
修回日期:
2016-10-28
出版日期:
2017-01-03
发布日期:
2017-01-03
通讯作者:
刘冠伟(1986—),男,副研究员,研究方向为能源材料、储能技术与能源互联网,E-mail:liuguanwei@tsinghua.edu.cn。
作者简介:
刘冠伟(1986—),男,副研究员,研究方向为能源材料、储能技术与能源互联网,E-mail:liuguanwei@tsinghua.edu.cn。
LIU Guanwei1,2, ZHANG Yichi1,2, CI Song1,2, YU Zhanqing1,2, ZENG Rong1,2
Received:
2016-09-09
Revised:
2016-10-28
Online:
2017-01-03
Published:
2017-01-03
摘要: 柔性电化学储能器件技术是支持柔性电子设备,如可穿戴设备等发展的关键技术,也是电化学储能领域中重要的发展方向。本文从柔性电化学储能器件的电极材料(碳纳米管、石墨烯、碳纸/碳纤维、织物等)、电解质(液态、固态、有机-无机复合电解质)、制造工艺(打印/涂覆/喷涂、沉积、纺织)及具有不同附加功能特性的新型柔性电池等方面对柔性电化学储能器件关键组元和技术的发展情况进行了综述。总体而言,作为处于研究起步阶段的技术,柔性电化学储能器件技术的主要发展方向在于在保证与应用情景(柔性、弯折等)相适应的力学性能的前提下,改善器件的功能特性(质量/体积能量密度、质量/体积功率密度、循环寿命、稳定性)与工业规模化生产适宜度。作为兼具结构-功能特性,应用前景广阔的储能技术分支,可以预见,柔性电化学储能器件技术在今后相当长的一段时间之内将持续为众多研究者所关注,并不断取得研究进展。
刘冠伟1,2,张亦弛1,2,慈 松1,2,余占清1,2,曾 嵘1,2. 柔性电化学储能器件研究进展[J]. 储能科学与技术, 2017, 6(1): 52-68.
LIU Guanwei1,2, ZHANG Yichi1,2, CI Song1,2, YU Zhanqing1,2, ZENG Rong1,2. Research progress on flexible electrochemical energy storage devices[J]. Energy Storage Science and Technology, 2017, 6(1): 52-68.
[1] OSTFELD A E, GAIKWAD A M, KHAN Y, et al. High-performance flexible energy storage and harvesting system for wearable electronics[J]. Sci. Rep., 2016, 6: doi: 10.1038/srep26122. [2] GWON H, HONG J, KIM H, et al. Recent progress on flexible lithium rechargeable batteries[J]. Energy Environ. Sci., 2014, 7(2): 538-551. [3] HU Y, SUN X. Flexible rechargeable lithium ion batteries: Advances and challenges in materials and process technologies[J]. Journal of Materials Chemistry A, 2014, 2(28): 10712-10738. [4] 李泓, 吕迎春. 电化学储能基本问题综述[J]. 电化学, 2015, 21(5): 412-424. LI H, LV Y C. Short review on electrochemical energy storage[J]. Journal of Electrochemistry, 2015, 21(5): 412-424. [5] 张舒, 王少飞, 凌仕刚, 等. 锂离子电池基础科学问题(X)——全固态锂离子电池[J]. 储能科学与技术, 2014, 3(4): 376-394. ZHANG S, WANG S F, LING S G, et al. Fundamental scientific aspects of lithium ion batteries(X)—All-solid-state lithium-ion batteries[J]. Energy Storage Science and Technology, 2014, 3(4): 376-394. [6] SHI J J, GUO X, CHEN R J, et al. Recent progress in flexible battery[J]. Prog. Chem., 2016, 28(4): 577-588. [7] DONG L B, XU C J, LI Y, et al. Flexible electrodes and supercapacitors for wearable energy storage: A review by category[J]. Journal of Materials Chemistry A, 2016, 4(13): 4659-4685. [8] HASEGAWA K, NODA S. Lithium ion batteries made of electrodes with 99wt% active materials and 1wt% carbon nanotubes without binder or metal foils[J]. J. Power Sources, 2016, 321: 155-162. [9] ZHAI Y P, DOU Y Q, ZHAO D Y, et al. Carbon materials for chemical capacitive energy storage[J]. Advanced Materials, 2011, 23(42): 4828-4850. [10] PAN Z Y, REN J, GUAN G Z, et al. Synthesizing nitrogen-doped core-sheath carbon nanotube films for flexible lithium ion batteries[J]. Advanced Energy Materials, 2016, 6(11): doi: 10.1002/aenm. 201600271. [11] LI L X, LI F. The effect of carbonyl, carboxyl and hydroxyl groups on the capacitance of carbon nanotubes[J]. New Carbon Mater., 2011, 26(3): 224-228. [12] BOSE S, KUILA T, MISHRA A K, et al. Carbon-based nanostructured materials and their composites as supercapacitor electrodes[J]. Journal of Materials Chemistry, 2012, 22(3): 767-784. [13] WANG X F, LU X H, LIU B, et al. Flexible energy-storage devices: Design consideration and recent progress[J]. Advanced Materials, 2014, 26(28): 4763-4782. [14] CHENG Y, ZHANG H, LU S, et al. Flexible asymmetric supercapacitors with high energy and high power density in aqueous electrolytes[J]. Nanoscale, 2013, 5(3): 1067-1073. [15] ZHOU G, LI F, CHENG H M. Progress in flexible lithium batteries and future prospects[J]. Energy Environ. Sci., 2014, 7(4): 1307-1338. [16] YOO J J, BALAKRISHNAN K, HUANG J, et al. Ultrathin planar graphene supercapacitors[J]. Nano Letters, 2011, 11(4): 1423-1427. [17] CHEN Z P, REN W C, GAO L B, et al. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition[J]. Nature Materials, 2011, 10(6): 424-428. [18] LI N, CHEN Z P, REN W C, et al. Flexible graphene-based lithium ion batteries with ultrafast charge and discharge rates[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(43): 17360-17365. [19] XU Y, SCHWAB M G, STRUDWICK A J, et al. Screen-printable thin film supercapacitor device utilizing graphene/polyaniline inks[J]. Advanced Energy Materials, 2013, 3(8): 1035-1040. [20] LU X, WANG G, ZHAI T, et al. Stabilized TiN nanowire arrays for high-performance and flexible supercapacitors[J]. Nano Letters, 2012, 12(10): 5376-5381. [21] FANG X, GE M Y, RONG J P, et al. Free-standing LiNi0.5Mn1.5O4/ [22] LI W W, WANG X F, LIU B, et al. Highly reversible lithium storage in hierarchical Ca2Ge7O16 nanowire arrays/carbon textile anodes[J]. Chemistry-A European Journal, 2013, 19(26): 8650-8656. [23] ELAZARI R, SALITRA G, GARSUCH A, et al. Sulfur-impregnated activated carbon fiber cloth as a binder-free cathode for rechargeable Li-S batteries[J]. Advanced Materials, 2011, 23(47): 5641-5644. [24] ZUO W, WANG C, LI Y, et al. Directly grown nanostructured electrodes for high volumetric energy density binder-free hybrid supercapacitors: A case study of CNTs//Li4Ti5O12[J]. Sci. Rep., 2015, 5: doi: 10.1038/srep07780. [25] LIU J, GUAN C, ZHOU C, et al. A flexible quasi-solid-state nickel-zinc battery with high energy and power densities based on 3D electrode design[J]. Advanced Materials, 2016, 28(39): 8732-8739. [26] HU L, CUI Y. Energy and environmental nanotechnology in conductive paper and textiles[J]. Energy & Environmental Science, 2012, 5(4): 6423. [27] WANG X, LIU B, HOU X, et al. Ultralong-life and high-rate web-like Li4Ti5O12 anode for high-performance flexible lithium-ion batteries[J]. Nano Research, 2014, 7(7): 1073-1082. [28] YU G, HU L, VOSGUERITCHIAN M, et al. Solution-processed graphene/MnO2 nanostructured textiles for high-performance electrochemical capacitors[J]. Nano Letters, 2011, 11(7): 2905-2911. [29] HU L B, ZHENG G Y, YAO J, et al. Transparent and conductive paper from nanocellulose fibers[J]. Energy & Environmental Science, 2013, 6(2): 513-518. [30] HU L, PASTA M, MANTIA F L, et al. Stretchable, porous, and conductive energy textiles[J]. Nano Letters, 2010, 10(2): 708-714. [31] NYHOLM L, NYSTROM G, MIHRANYAN A, et al. Toward flexible polymer and paper-based energy storage devices[J]. Advanced Materials, 2011, 23(33): 3751-3769. [32] KOO M, PARK K I, LEE S H, et al. Bendable inorganic thin-film battery for fully flexible electronic systems[J]. Nano Letters, 2012, 12(9): 4810-4816. [33] HU L B, WU H, CUI Y. Metal nanogrids, nanowires, and nanofibers for transparent electrodes[J]. MRS Bulletin, 2011, 36(10): 760-765. [34] SONG J, LI J, XU J, et al. Superstable transparent conductive Cu@Cu4Ni nanowire elastomer composites against oxidation, bending, stretching, and twisting for flexible and stretchable optoelectronics[J]. Nano Letters, 2014, 14(11): 6298-6305. [35] XU F, ZHU Y. Highly conductive and stretchable silver nanowire conductors[J]. Advanced Materials, 2012, 24(37): 5117-5122. [36] KAMAYA N, HOMMA K, YAMAKAWA Y, et al. A lithium superionic conductor[J]. Nat. Mater., 2011, 10(9): 682-686. [37] QUARTARONE E, MUSTARELLI P. Electrolytes for solid-state lithium rechargeable batteries: Recent advances and perspectives[J]. Chemical Society Reviews, 2011, 40(5): 2525-2540. [38] 刘晋, 徐俊毅, 林月, 等. 全固态锂离子电池的研究及产业化前景[J]. 化学学报, 2013, 71(6): 869-878. LIU J, XU J Y, LIN Y, et al. All-solid-state lithium ion battery: Research and industrial prospects[J]. Acta Chimica Sinica, 2013, 71(6): 869-878. [39] 倪冰选, 焦晓宁, 阮艳莉. 聚合物锂离子电池用凝胶电解质的研究进展[J]. 天津工业大学学报, 2009, 28(3): 48-52. NI B X, JIAO X N, RUAN Y L. Research progress of gel electrolyte for polymer lithium-ion battery[J]. Journal of Tianjin Polytechnic University, 2009, 28(3): 48-52. [40] 许晓雄, 邱志军, 官亦标, 等. 全固态锂电池技术的研究现状与展望[J]. 储能科学与技术, 2013, 2(4): 331-341. XU X X, QIU Z J, GUAN Y B, et al. All-solid-state lithium-ion batteries: State-of-the-art development and perspective[J]. Energy Storage Science and Technology, 2013, 2(4): 331-341. [41] CATTI M, SOMMARIVA M, IBBERSON R M. Tetragonal superstructure and thermal history of Li0.3La0.567TiO3 (LLTO) solid electrolyte by neutron diffraction[J]. Journal of Materials Chemistry, 2007, 17(13): 1300-1307. [42] STRAMARE S, THANGADURAI V, WEPPNER W. Lithium lanthanum titanates: A review[J]. Chemistry of Materials, 2003, 15(21): 3974-3990. [43] LI Y, HAN J T, WANG C A, et al. Ionic distribution and conductivity in lithium garnet Li7La3Zr2O12[J]. J. Power Sources, 2012, 209: 278-281. [44] KANNO R, HATA T, KAWAMOTO Y, et al. Synthesis of a new lithium ionic conductor, thio-LISICON-lithium germanium sulfide system[J]. Solid State Ionics, 2000, 130(1/2): 97-104. [45] LIU W, LIU N, SUN J, et al. Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers[J]. Nano Letters, 2015, 15(4): 2740-2745. [46] SINGH N, GALANDE C, MIRANDA A, et al. Paintable battery[J]. Sci. Rep., 2012, 2: doi: 10.1038/srep00481. [47] XU Y F, HENNIG I, FREYBERG D, et al. Inkjet-printed energy storage device using graphene/polyaniline inks[J]. J. Power Sources, 2014, 248: 483-488. [48] WENG W, LIN H J, CHEN X L, et al. Flexible and stable lithium ion batteries based on three-dimensional aligned carbon nanotube/silicon hybrid electrodes[J]. Journal of Materials Chemistry A, 2014, 2(24): 9306-9312. [49] DONDERS M E, OUDENHOVEN J F M, BAGGETTO L, et al. In atomic layer deposition applications 6[M]. Elam J W, DeGendt S, VanDerStraten O, Delabie A, Londergan A, Bent S F, Roozeboom F. Eds. USA, The Electrochemical Society, 2010, 33: 213-222. [50] ALAF M, GULTEKIN D, AKBULUT H. Electrochemical properties of free-standing Sn/SnO2/multi-walled carbon nano tube anode papers for Li-ion batteries[J]. Applied Surface Science, 2013, 275: 244-251. [51] DING J J, SUN Q, FU Z W. Layered Li(Ni1/4Mn1/2Co1/3)O2 as cathode material for all-solid-state thin-film rechargeable lithium-ion batteries[J]. Electrochemical and Solid-State Letters, 2010, 13(8): A105-A108. [52] SUZUKI N, SHIRAI S, TAKAHASHI N, et al. A lithium phosphorous oxynitride(LiPON) film sputtered from unsintered Li3PO4 powder target[J]. Solid State Ionics, 2011, 191(1): 49-54. [53] ZHAO S, FU Z, QIN Q. A solid-state electrolyte lithium phosphorus oxynitride film prepared by pulsed laser deposition[J]. Thin Solid Films, 2002, 415(1/2): 108-113. [54] HIRAYAMA M, KIM K, TOUJIGAMORI T, et al. Epitaxial growth and electrochemical properties of Li4Ti5O12 thin-film lithium battery anodes[J]. Dalton Trans., 2011, 40(12): 2882-2887. [55] 刘文元, 傅正文, 秦启宗. 锂磷氧氮(LiPON)薄膜电解质和全固态薄膜锂电池研究[J]. 化学学报, 2004, 62(22): 2223-2227. LIU W Y, FU Z W, QIN Q Z. Studies on lithium phosphorous oxynitride electrolyte thin films and a new all-solid-state thin film lithium battery[J]. Acta Chimica Sinica, 2004, 62(22): 2223-2227. [56] XIA X, TU J, ZHANG Y, et al. Porous hydroxide nanosheets on preformed nanowires by electrodeposition: Branched nanoarrays for electrochemical energy storage[J]. Chem. Mat., 2012, 24(19): 3793-3799. [57] WANG C, WU L, WANG H, et al. Fabrication and shell optimization of synergistic TiO2-MoO3 core-shell nanowire array anode for high energy and power density lithium-ion batteries[J]. Advanced Functional Materials, 2015, 25(23): 3524-3533. [58] SHI H, LIU C, JIANG Q, et al. Three novel electrochemical electrodes for the fabrication of conducting polymer/SWCNTs layered nanostructures and their thermoelectric performance[J]. Nanotechnology, 2015, 26(24): doi: 10.1088/0957-4484/26/24/245401. [59] ZHANG Y, ZHAO Y, REN J, et al. Advances in wearable fiber-shaped lithium-ion batteries[J]. Advanced Materials, 2016, 28(22): 4524-4531. [60] MENG Y, ZHAO Y, HU C, et al. All-graphene core-sheath microfibers for all-solid-state, stretchable fibriform supercapacitors and wearable electronic textiles[J]. Advanced Materials, 2013, 25(16): 2326-2331. [61] YU D, GOH K, WANG H, et al. Scalable synthesis of hierarchically structured carbon nanotube-graphene fibres for capacitive energy storage[J]. Nat. Nano, 2014, 9(7): 555-562. [62] REN J, LI L, CHEN C, et al. Twisting carbon nanotube fibers for both wire-shaped micro-supercapacitor and micro-battery[J]. Advanced Materials, 2013, 25(8): 1155-1159, 1224. [63] KWON Y H, WOO S W, JUNG H R, et al. Cable-type flexible lithium ion battery based on hollow multi-helix electrodes[J]. Advanced Materials, 2012, 24(38): 5192-5197. [64] FU Y, CAI X, WU H, et al. Fiber supercapacitors utilizing pen ink for flexible/wearable energy storage[J]. Advanced Materials, 2012, 24(42): 5713-5718. [65] HSU P C, KONG D, WANG S, et al. Electrolessly deposited electrospun metal nanowire transparent electrodes[J]. J. Am. Chem. Soc., 2014, 136(30): 10593-10596. [66] GE J, CHENG G, CHEN L. Transparent and flexible electrodes and supercapacitors using polyaniline/single-walled carbon nanotube composite thin films[J]. Nanoscale, 2011, 3(8): 3084-3088. [67] CHEN X L, LIN H J, DENG J, et al. Electrochromic fiber-shaped supercapacitors[J]. Advanced Materials, 2014, 26(48): 8126-8132. [68] YANG Y, JEONG S, HU L B, et al. Transparent lithium-ion batteries[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(32): 13013-13018. [69] XU S, ZHANG Y, CHO J, et al. Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems[J]. Nat. Commun., 2013, 4: doi: 10.1038/ncomms2553. [70] YU C, MASARAPU C, RONG J, et al. Stretchable supercapacitors based on buckled single-walled carbon-nanotube macrofilms[J]. Advanced Materials, 2009, 21(47): 4793-4797. [71] KALTENBRUNNER M, KETTLGRUBER G, SIKET C, et al. Arrays of ultracompliant electrochemical dry gel cells for stretchable electronics[J]. Advanced Materials, 2010, 22(18): 2065-2067. [72] CHEN X, LIN H, CHEN P, et al. Smart, stretchable supercapacitors[J]. Advanced Materials, 2014, 26(26): 4444-4449. [73] CAI L, SONG L, LUAN P, et al. Super-stretchable, transparent carbon nanotube-based capacitive strain sensors for human motion detection[J]. Sci. Rep., 2013, 3: doi: 10.1038/srep03048. [74] LU X, YU M, WANG G, et al. Flexible solid-state supercapacitors: Design, fabrication and applications[J]. Energy & Environmental Science, 2014, 7(7): 2160-2181. [75] ZHAO J, LU Z, LIU N, et al. Dry-air-stable lithium silicide–lithium oxide core-shell nanoparticles as high-capacity prelithiation reagents[J]. Nat. Commun., 2014, 5: doi: 10.1038/ncomms6088. [76] LI R, WANG Y, ZHOU C, et al. Carbon-Stabilized high-capacity ferroferric oxide nanorod array for flexible solid-state alkaline battery-supercapacitor hybrid device with high environmental suitability[J]. Advanced Functional Materials, 2015, 25(33): 5384-5394. [77] PAN S W, REN J, FANG X, et al. Integration: An effective strategy to develop multifunctional energy storage devices[J]. Advanced Energy Materials, 2016, 6(4): doi: 10.1002/aenm.201501867. [78] CHEN T, QIU L B, YANG Z B, et al. An integrated “energy wire” for both photoelectric conversion and energy storage[J]. Angewandte Chemie-International Edition, 2012, 51(48): 11977-11980. [79] PAN S, LIN H, DENG J, et al. Novel wearable energy devices based on aligned carbon nanotube fiber textiles[J]. Advanced Energy Materials, 2015, 5(4): doi: 10.1002/aenm.201401438.
|
[1] | 李海涛, 孔令丽, 张欣, 余传军, 王纪威, 徐琳. N/P设计对高镍NCM/Gr电芯性能的影响[J]. 储能科学与技术, 2022, 11(7): 2040-2045. |
[2] | 王宇作, 卢颖莉, 邓苗, 杨斌, 于学文, 荆葛, 阮殿波. 超级电容器自放电的研究进展[J]. 储能科学与技术, 2022, 11(7): 2114-2125. |
[3] | 刘显茜, 孙安梁, 田川. 基于仿生翅脉流道冷板的锂离子电池组液冷散热[J]. 储能科学与技术, 2022, 11(7): 2266-2273. |
[4] | 陈龙, 夏权, 任羿, 曹高萍, 邱景义, 张浩. 多物理场耦合下锂离子电池组可靠性研究现状与展望[J]. 储能科学与技术, 2022, 11(7): 2316-2323. |
[5] | 易顺民, 谢林柏, 彭力. 基于VF-DW-DFN的锂离子电池剩余寿命预测[J]. 储能科学与技术, 2022, 11(7): 2305-2315. |
[6] | 祝庆伟, 俞小莉, 吴启超, 徐一丹, 陈芬放, 黄瑞. 高能量密度锂离子电池老化半经验模型[J]. 储能科学与技术, 2022, 11(7): 2324-2331. |
[7] | 王宇作, 王瑨, 卢颖莉, 阮殿波. 孔结构对软碳负极储锂性能的影响[J]. 储能科学与技术, 2022, 11(7): 2023-2029. |
[8] | 孔为, 金劲涛, 陆西坡, 孙洋. 对称蛇形流道锂离子电池冷却性能[J]. 储能科学与技术, 2022, 11(7): 2258-2265. |
[9] | 霍思达, 薛文东, 李新丽, 李勇. 基于CiteSpace知识图谱的锂电池复合电解质可视化分析[J]. 储能科学与技术, 2022, 11(7): 2103-2113. |
[10] | 邓健想, 赵金良, 黄成德. 高能量锂离子电池硅基负极黏结剂研究进展[J]. 储能科学与技术, 2022, 11(7): 2092-2102. |
[11] | 欧宇, 侯文会, 刘凯. 锂离子电池中的智能安全电解液研究进展[J]. 储能科学与技术, 2022, 11(6): 1772-1787. |
[12] | 韩俊伟, 肖菁, 陶莹, 孔德斌, 吕伟, 杨全红. 致密储能:基于石墨烯的方法学和应用实例[J]. 储能科学与技术, 2022, 11(6): 1865-1873. |
[13] | 辛耀达, 李娜, 杨乐, 宋维力, 孙磊, 陈浩森, 方岱宁. 锂离子电池植入传感技术[J]. 储能科学与技术, 2022, 11(6): 1834-1846. |
[14] | 燕乔一, 吴锋, 陈人杰, 李丽. 锂离子电池负极石墨回收处理及资源循环[J]. 储能科学与技术, 2022, 11(6): 1760-1771. |
[15] | 沈秀, 曾月劲, 李睿洋, 李佳霖, 李伟, 张鹏, 赵金保. γ射线辐照交联原位固态化阻燃锂离子电池[J]. 储能科学与技术, 2022, 11(6): 1816-1821. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||